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6.3 A Single-Phase Latch

An essential component of traditional sequential logic design is the synchronous latch,
a storage element whose state changes only at clock transitions. Typically, such
latchesl' are placed between logic elements that are strictly combinational; clocking
the latches with a single-phase clock provides a hazard-free design discipline.

Unfortunately, at the transistor level devices are level sensitive, not edge sensitive.
In conventlona.l digital VLSI design, this constr: aint has given rise to design disciplines
involving multiple clock phases. Typlcally, each clock phase ena.bles Iesynchlomzatlon
registers. In practice, _these registers are of_ten as simple as dynamic state-storage
nodes gated by pass transistors. This explicit pipelining gives rise to constraints on
each of the clock phases; this procedure often places severe demands on the design
tools (since the clocking discipline becomes an integral part of the speciﬁcation of
the interface between circuit subsystems) Also, there are serious pra,ctlcal difficulties
involved in distributing multiple phases (i.e., limiting clock skew) and additional
circuit overhea.d involved in computing derived clocks.

Thus, although level-sensitive clock dlsc1plmes are very flexible, and ultimately

hold the promise of maximum performance, they are needlessly comphcated for many

| a.pplications‘.. In particular, novice designers would find extremely attractive the abil-

" ity to apply familiar design techniques involving edge-triggered latches.

In Sections 6.3.1 to 6.3.2, we describe a new single-phase latch design. It is rela-
twely small, compnsmg 14 tla,nsxstoxs, vet can be designed to be nsk-free Although
s1rmla.r to master—slave designs, it is a true edge-sensmve 1mp1ementa.t10n The out-
put becomes available immediately, and is not delayed until the complementary clock
transition, as in traditional maeter'—slave designs. This cell can be employed as either
a D flip-flopor a T flip-flop. It has been used successfully in various systems, in-

cluding scanning and self-timed retina design frames, and an asynchronous up—down



167

counter for neural integrators.

6.3.1 A Level-Sensitive Latch

The edge-sensitive latch is based on complementaiy set-reset logic (CSRL) (see Fig-
ure 6.10 and [MW85]). A CSRL stage consists of two cross-coupled inverters, with a
power-up transistor Q3, and two access devices Q; and Q. In the f'ollowing discus-
sion, complementary mputs are assumed When the clock ¢ is high, the ﬂlp-ﬂop is
disconnected from the Vdd rail, and the internal state is 1mposed by the envuonment
.through the access devmes In this’ condition, that the mverter pair is able to restore
one of its internal state nodes, because the Q¢ and Q- devxces are always connected
to ground, and hence can pull down one of nodes Q and (0. This ability plays an
important role in our discussion of the operation of the edge-triggered latch.

When the clock goes low, the access devices are disabled, and the power-up device .
Qs turns ON, making the latch fully static. The conventional application of CSRL
[Waw86, Waw87) erhploys pipeline stages of CSRL latches, clocked by a two-phase
nonoverlapping clock. The principal virtues of this approach a.fe (1) only two clock
' pheses are requ-ired (no locally generated complements are needed), (2) operation is
fully restored and fully static, and (3) dense eemputa.tional primitives are available
that expleit the dual-rail signal inputs (and a general switching form described in
[MW85]). | | |

6.3.2 An Edge-Sensitiire_ Latch

Ihstead of the use of two identical CSRL stages clocked by two n_onoverlapping clock
phases, we propose the use of two complementary stages clocked by the same clock
~ (see Figure 6.11). This strategy is similar to the w-latch—p-latch a,pproach proposed
.by Denyer [MDM87]; the key difference is that when we employ CSRL .stages. we
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Figure 6.10: A single CSRL stage. When power is removed
from the cross-coupled inverters Q,/Qs and Qs5/Q7, the access
devices Q7 and Q; are enabled, and can drive the external state
D/D into the latch. When the clock goes low, the drive from the
access devices is removed, and (Q; turns ON, making the latch
fully static. ' '
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Figure 6.11: An edge-sensitive CSRL latch.

| require only 14 transistors for fully static operation, instead of the 32 Denyer’s design
uses. In fact, our transistor count is quite competitive with the 10 transistors used in
their dynamic design, especially considering the concomitant advantages of dual-rail
signal r'ept'esentatidns.. - o -
The op‘era.tibn of the latch is cbnceptualiy simple: When the clock is low, the right-
| hand stage is powered, and is isolated from the left-hand stage. The left-hand stage, |
on the other hand, is driven by its inputs. When the clock goes high, the influence
- of the inputs is removed, and the'left-h:_md stage latches its state. Furthérmore, pass
~ transistors Q3 and Q4 permit the new state to be propagated to the right-hand latch
(and to the outputs); when the clock goes low, the outputs are restox_'ed.to the rails,

and the left-hand stage becomes sensitive to its inputs again,
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6.3.3 Analysis of the Edge-Sensitive Latch

A more careful analysis is required to guarantee the direction of data transfer de-
scribed in Section 6.3.2. A potential difficulty arises becauée pass transistors are in-
herentl}; bidirectional elements, and the current state latched in the right-hand latch
could corrupt the “next-state” data to be latched from the left, during the conduction
overlap period as the clock rises with a finite rise time. The cricial observation that
facilitates the analysis of the system is that, although CSRL sfages can be thought
of ‘oeihg powered down, they are, in fact, always capable of full current diive toward
one of the power rails. |

Referring again to Figure 6.11, we observe that, as ¢ rises, Q3 and Q4 bégin to
turn ON_ There are four state variables we must consider; Withoﬁt loss of generality,
suppose the initial conditions are Vo =5V, Vp =0V, V = Vr, and Vg =5 V.
Consequently, Qg drives node Vp high, just as Q13 pulls node Vp low. Thus, we can
limit our consideration to nodes V4 and V¢, whose drives are a function of the clock
voltage. Initially, V¢ is driven high by Q10~Qi2. Node V, is the critical node: It is
pulled up by @3, and pulled down by Q7-Qs (it is also pulled down by Q,, but, to be
conservative, we ignore this current). | |

Q; is always saturated, so above threshold we have [Vit89)

17 o
IQa = (f) 0 kn(¢ - VT“ — RVA)2

Assuming Q7 is ON and is ohmic, the current out of node VA is limited by the current

through Qs: o
Ig, = (f) (20 = Ve Va - v2)
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Clearly, a conservative sufficient condition for the correct operation of the latch is

_ IQ5 -2 IQ3 |
(W/L)g, (¢ — Vi, —nV,)? |
WD, = 2A¢—Vo)Va- V2 (6.4)

~ We select a noise margin for safe operation (e.g., we allow Vy to rise to 1.5 V), and

we consider the range of possible voltages for ¢. For a typical 2 CMOS process,
Figure 6.12 indicates safe values_for the access~transisfor geometry ratio.

Clearly, this analysis is conservative in several respects. 'Fir_st, no i)rovisibn is
made for decreased current drive froxﬁ the right-hand stage as the clock rises (and
thé drive of Qo decreases). Second, a conservative noise margin of approximately .
1 V has been chosen for V, (in practice, V4 could be allowed to rise to about 25 V
before failure; only when V4 and Vj cross over does actual failure occur). Third, no
account was taken of the additional current drive through a,cceés device (01, which
acts to decrease the likelihood of failure. | '

This analysis also presents an a.ttractivé intuitive expla.nation.of why the single-
pha,ée latch works: The conflict is between transistors of the same type. Thus, we
can guarantee safe operation, effectively independent of fine details of process pa-
rameters and variations, simply by elongating the access pass transistors (a ratio of
(W/L)os/(W/L)g, = 4 is typically chosen, abd has been observed experimentally to
be safe over the current range of MOSIS processes). Finally, because only transistors
of the same type are ever in conflict, it is safe to alternafé n-CSRL with p-CSRL

stages (e.g., to construct shift registers).

6.3.4 Single Phase Toggle Flip-Flops

We can exploit this closure property, which allows composition of alternate n- and

p-CSRL stages, in a more direct way: By connecting the D and Q (and D and Q)
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Figure 6.12: Minimum geometry factor for safe operation of
the edge-sensitive latch. These values assume a typical CMOS
‘process with Vir, = 1 V, and n = 1.4. The dashed line is for
Equation 6.1; the behavior at low voltages is an artifact, as the
assumption of above-threshold saturation operation is violated.
. The solid line is obtained by applying a continuous model (above
and below threshold, ohmic and saturation regimes) developed
in [Vit89], and repeating the analysis of Section 6.3.3. No ac-
count is taken of capacitive coupling between the access devices®
‘gate—source overlap capacitance with the diffusion capacitance
of node Vs (typical geometries reveal less than 0.2 V coupling,
however).
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Figure 6.13: A toggle flip-flop cell using the single-clock CSRL

discipline. The output inverter is included for increased drive,

sharpening the output signal, and isolating the electrical envi-

ronment within the cell. A typical T-flop would have two such

buffered outputs (Q and @).
nodes of a single stage, we obtain a toggle flip-flop (see Figure 6.13). To maintain the
electrical symmetry of the nodes within the T-flop, we buffer the outputs of the cell
with inverters. The analysis for correct operation is eSsenti_a.lly unchanged from that
in the previous section. We have observed experimentally that, with the addition of
the buffer inverters, a T-flop stage output can reliably drive the toggle-clock input of a
subsequent stage (see Figure 6.14). In fact, the operation of the toggle cell is so robust

that even very small clock signals can be used to toggle the cell (see Figure 6.15).
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CH1 DC 2V 5us AVG; CH2 DC 2V 5us AVG;
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Figure 6.15: Nonrestored clock applied to toggle flip-flop cell.

These experimental data illustrate the robustness of the toggle
fiip-flop cell against variations in clock rise- and fall-time, and
in amplitude of clock waveform. The output is from the second

' stage of a binary ripple counter.



176

6.3.5 Asynchronous Up—Down Counters

A direct application of the edge-triggered toggle flip-flop cell is a binary rippzle counter.
Either an up-counter or a down-counter can be constructed, by selecting the Q or
Q output (respectively) of a stage to drive the clock input of the next stage. In
this section, we describe two interesting extensions to this procedure, to construct a
universal cell for Gray code counters, and for combining two binary up-counters to

‘provide an asynchronous up-down counter.

‘A Scalable Gray-Code Counter

A well-known disadvantage of binary ripple counters is their passage through spurious
states as the carry signal propagates down the chain. For example, in going from the
011.1 state to the 1000 state, a ripple counter will (prbbably) pass through the states
0110, 0100, and 0000. This behavior is unattractive for asynchronous systems (eg.,
D/A converters) that are always sensitive to transitions in their inputs. Note that this
behavior is independent of the counting. rate, and is fundamentally different that the
high count-rate dynamic instability of multiple carries propagating simultaneously
down the chain. |

Systems that depend on noise-free transitions between successive states, such as
shaft-encoders, rely on Gray-code encodings, where adjacent states differ by exactly
one bit. Figu.re 6.16(a) illustrates this code; Gray code can be converted to-binary
by exploiting the reﬂected—binai:y nature of the code (Figure 6.16(b)). |

We can construct a Gray-code counter by observing the following property of the .
Gray-code sequence: At every clock transition, we flip the least-significant bit that_
takes us to a state that has not been already visited. Figure 6.17 shows an even
more direct interpretation: The bit that changes is the one that describes the extent

of carry propagation in the corresponding binary ripple counter. Figure 6.17b shows
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most significant bit (MSB) of a subword is set, we must invert

the remaining bits in the subword before interpreting the result.
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Figure 6.17: A scalable Gray-code counter. {a) A general al-

gorithm for selecting which bit to toggle, when counting in a

Gray code. (b)Use of a binary ripple up-counter to generate

the toggle signal for that particular bit. _
a direct impleinentation of this architecture; the result is an arbitrarily scalable Gray
code counter, in which each stage is identical to the preceding stagé (except for the
last stage, which generates the most significant bit (MSB)). Sample output from a

fabricated test structure is shown in Figure 6.18.

An Asynchronous Up-Down Binary Counter

We can synthesize an asynchronous N - 1-bit up-down counter from two (N —1)-bit
up-counters. Each (N — 1')-bit counter can count in the range [-M — 1, M|, where
M = 2¥-2 _ 1. The problem we must solve is how to handle the .wrap-around that
occurs when each of these counters overflows.

Let U be the state of the up—counter", and ¥ = Up_z be the value of the MSB of
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the up-counter. Sim'ilarly, D and d refer to the down-counter’s state and MSB value.
Let X be the difference between U and D, computed by a standard two’s-complement
(N —1)-bit subtraction (defined by X =U+ "D +1, where “~” is the bit-wise logical -
negation operator). | _ ' |

We use an (N — 1)-bit subtracter, and synthesized the MSB by a finite-state
machine with 4 and d as inputs.  For any given value in the up-counter, we can
1dent1fy umquely the correct dlﬁ’erence if the down-counter’s value lies in the range
illustrated in Flgure 6.19. If the down-counter’s value hes outs1de thlS range, ad- -
ditional bits of state information are required—it would be simpler to extend the
counters. Flgure 6.19 also descnbes_ the mterpretatlon that must be assigned to the '.
(N — 1)-bit difference X (.i.‘e.., the value of the MSB (2 = Xy-_1) required for the
* - correct interpretation of the difference, in two’s-complement notation). |

We can reduce the state-transition diagram (Figure 6.20) to a Huffman flow table
(Figure 6.21) If we ignore the possibility of overflow errors, and assume that only
" fundamental-mode operation is allowed (ie., only single transitions of «, d, or z are
permitted), this flow table collapses to that shown in Figure 6.22, where A is the
union of states 1, 2, and 3, and B is the union of states 3, 4, and 5.

At this point, state encodings can be assigned, and Boolean logic m1mrmzat10n
can be applied to obtain the following finite-state machine. For § = {4,B} = {0,1},

shext .u .d 4+ u. sPresent 4 g gpresent

xnext = ‘Ted- phresent o & . d.% 4 u.d”xpresent + u-d-s

If we want to detect overflow, the state flow table can be collapsed only to four

states, and an additional state variable (w) is required:

snext = u-d 4+ u- sp:'esent + d- spresent
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(2)

UP DOWN r=Xyo

A D & = X -2 (sign-extegd)
A E z=1

B b z=0

B E z = Xn-2 (sign-extegd)
B F z=1

C| B |==0
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Figure 6.19: Synthesis of an up-down counter from two up- '
counters. We can interpret the difference between two up-
counters uniquely, if we also keep track of in which subrange
{u = {0,1},d = {0,1}) the two up-counters are operating. In
the worst case, the dynamic range of the synthesized difference
output is [-M, M], corresponding to (N — 1) bits of precision.
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Figure 6.20: State-transition diagram for up—-down counter.
Transitions in the most significant bits (v and d) of the two up-
counters are monitored; in conjunction with the current MSB

(z), they determine the next state.
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Figure 6.21: Huffman flow table for up—down counter. This
table captures all the transitions of Figure 6.20, as a function
of the inputs u, d, and z. Transitions in boxes represent fixed
points, whereas transitions in brackets constitute violations of
the fundamental-mode assumption (i.e., only one input is per-
mitted to change at a time). The dark circles correspond to the
detection of an overflow condition (i.e., a state that cannot be
represented with only a single bit of additional information (z)).
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u. d. phresent
kRt

STATEPtesent 000 001 011 010 110 111 101 100

I[alo [A]r E [l Bo Bl [a]o [alo
B A0 Al [Blo [Blo [Blo [B]1 [B]1 [B]1
Figure 6.22.: Simplified Huffman flow-table for up-down

counter. We no longer attempt to detect the overflow condi-
tion.
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w*t = d.5+ u-d+us
ghext — g d. pPpresent + u-d- ypPresent +%-d-F + u-d- s.
OVERFLOW = @-d-w + v-d- @

Thus, we have constructed an N —1 bit up~down counter wif:h a guéranteed range
of [-M, M] by subtracting two (N — 1)-bit counters. Because two independent up-
counters are used, the resulting up-down counter is free to accept asynchronous UPI_
and DOWN inputs. This property makes this up-down counter attractive for neural |

integrators of the sort used in bidirectional servomotor control [DM88].
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