
in Electronic Devices and Circuits

Noise is any unwanted excitation of a circuit, any
input that is not an information-bearing signal.

Noise comes from

• External sources: Unintended coupling with
other parts of the physical world.  In principle,
this kind of noise can be virtually eliminated
by careful design.

• Internal sources: Unpredictable microscopic
events that happen in the devices that constitute
the circuit.  In principle, this kind of noise can
be reduced, but never eliminated.

Noise is especially important to consider when
designing low-power systems because the signal
levels (typically voltages or currents) are small.
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The amount of noise in a signal is characterized by its
root mean square (RMS) value.

The noise level sets the size of the smallest signal that
can be processed meaningfully by a physical system.
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The mean squared levels of (statistically) independent
noise sources add:
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The distribution of noise power over the spectrum is
called the power spectral density (PSD) of the noise.

White noise: Noise power is spread uniformly across
the spectrum (cf. white light).

Pink noise (a.k.a. flicker or 1/f noise): Noise power is
concentrated at lower frequencies (cf. pink light).
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Usually, the noise in a device is a mixture of white
noise and 1/f noise, where the two noise processes
are independent.

In general, the 1/f noise corner frequency is highly
process and bias dependent.
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Shot noise: Variations in the arrival times of dis-
crete charge carriers arising from the unpredictable
time that each enters the device.
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• Requires DC current flow.
• Noise in diodes, BJTs, and vacuum tubes.

Thermal noise: Variations in the arrival times of
discrete charge carriers arising from their unpre-
dictable thermal motions within in the device.
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• Requires no DC current flow.
• Noise level is directly proportional to T.
• Noise in resistors, MOSFETs, and JFETs.

Conventional view: There are two distinct kinds.

Unconventional view: Thermal noise is (two-sided)
shot noise arising from diffusion currents.



We model the variation in the arrival times of dis-
crete charge carriers at the terminal of a device as a
Poisson process with a mean arrival rate, λ.

• Pr{carrier arrives in (t, t + dt)} ≈ λ dt

• Knowing how many carriers arrived in some
past time interval tells us nothing about how
many will arrive in a subsequent time interval.

n = λ T and δn2
 = λ T

I =
qn 

T
= qλT

T
= qλ

δI2=
q2δn2

T2 =
q2λT

T2 = q
qλ
T

~ qI∆f

Let n be the number of carriers arriving in a given
time interval T.  For a Poisson process,

Average current:

Fluctuation in current over time scale T (∆f ~ 1/T):

for every time scale T.
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Noise is minimum
because Ir ≈ 0.

Noise is maximum
because Ir = Isat.

Noise is intermediate
because 0 < Ir < Isat.
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White Noise in a Resistor
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Using the subthreshold MOS transistor with VDS = 0
as a model, we can decompose the uniform concen-
tration of electrons in a shorted resistor into equal
forward and reverse components

Nyquist’s classic thermal noise result derived from
a purely shot noise point of view!
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in Resistors and MOS Transistors

One formula describes the white noise in all cases:

Average charge
per unit area

Subthreshold MOS Transistor:

Above Threshold MOS Transistor:

Resistor:
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Assume that there is a uniform density, ρ, of traps
in the gate oxide, independent of x.

A charge, q, will enter or leave a trap at a time
scale set by the tunneling probability:

For a fixed frequency interval df, the total amount
of trapped charge Q will fluctuate as   A ρ dx

f ~ e–α x

⇒ log f ~ –α x ⇒ df
f

~ –α dx

⇒ δQ2 ~ A ρ dx ~ A
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f
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We can think of the trapped charge as modulating
the transistor’s threshold voltage:

δQ2⇒ δVT ~2 df
f

1
CG

2 ~
A
A2

δQ2 ~ A 

CG ~ A 

df
f

~
1
A

VG

ψs

VS

Traps

x dx

⇒ δI  
2 ~gm

2 df
f

~
gm

A

2

δVT
2


