Layout for Analog Integrated Circuits

- **Layout** is the process of specifying the physical placement of and interconnections between all of the devices in a circuit.
- Layout is used to generate all of the mask layers used for chip fabrication.
- Layout for digital circuits:
	- Usually many transistors
	- Many transistors are minimum size
	- Transistors are sized to minimize delays
	- Focus on interconnections between modules
- **Layout for analog circuits:**
	- Usually relatively few transistors
	- Few transistors are minimum size
	- Transistors are sized to minimize offsets
	- Focus on optimizing individual devices

Resistors

Capacitors

Control of Absolute Component Values

- Control device geometries by avoiding uncertainties. Examples:
	- Stacked vs serpentine MOS transistors
	- Bending uncertainties in a resistor controlled by a low resistivity layer

Avoid using minimum dimensions.

$$
R = R_{\square} \frac{L}{W}
$$

\n
$$
\frac{\Delta R}{R} = \frac{\Delta R_{\square}}{R_{\square}} + \frac{\Delta L}{L} - \frac{\Delta W}{W}
$$

\n
$$
\frac{\Delta C}{C} = \frac{\Delta C_{\text{S}}}{C_{\text{S}}} + \frac{\Delta L}{L} + \frac{\Delta W}{W}
$$

\n
$$
\frac{\text{indep. of } minimize by }{\text{w & L } making W >> W_{\text{min}}}
$$

\n
$$
\sim 5-50\% \text{ and } L >> L_{\text{min}}
$$

\n
$$
\sim 5-50\% \text{ and } L >> L_{\text{min}}
$$

Good circuit designs minimize reliance on absolute component values.

Layout for Device Matching

Devices on the same die can match well (precision):

$$
\frac{\Delta C}{C} \sim 0.1\% \qquad \frac{\Delta R}{R} \sim 0.1\% \qquad \frac{\Delta I_s}{I_s} \sim 1-10\%
$$

For circuits characteristics (e.g., gains) that depend on ratios of component values,

Precise matching \Rightarrow Accurate characteristics

To improve device matching, use devices with

- Same temperature
- Identical shape and size
- Minimum spacing
- Common centroid geometries
- Same orientation
- Same surroundings
- Nonminimum size

Caveat emptor! The relevance of each "rule" depends on particulars of the process and devices involved.

Matching: Same Temperature

- Not a serious problem if the total power dissipation on chip is low enough (e.g., subthreshold CMOS).
- Place devices symmetrically with respect to the source of heat along an isotherm:

Matching: Identical Shape and Size

Matching: Minimum Distance

- Take advantage of spatial correlations.
- Place devices as close together as possible.
- Examples:

Matched Resistors 3-Output Current Mirror

Matching: Common Centroid

Compensation of constant gradients

- **Temperature**
- Oxide thickness
- Substrate Doping
- Example: Cross-coupled quad

Complicated layout \Rightarrow not practical for $> 2 \times 2$

Matching: Same Orientation

Eliminate mismatch arising from:

- Anisotropic substrate
- Anisotropic process steps
- Packaging-induced stresses

Example: Differential Pair

Fair

Matching: Same Surroundings

Reasons are not always clear. Possibilities include:

- Fringing fields
- Nonuniform lithography
- Nonuniform etching during processing
- Use dummy devices to make all functional devices have the same surroundings.
- Examples:

Sometimes the surround can be simulated adequately with dummy strips.

Matching for Non-Unity Ratios

For n/m ratios, use $n+m$ unit devices:

Example: Capacitors

Matching for Non-Unity Ratios

For arbitrary ratios, violate matching rules optimally. Examples:

Layout Considerations for ^a Low-Voltage Cascode Current Mirror

- • To ge^t accurate ratios, we implement the *ⁿ*MOS of width *^m* as ^a parallel connection of *^m* unit transistors.
- \bullet Similarly, we implement the *p*MOS of length *ⁿ* as ^a series connection of *ⁿ* unit transistors.
- \bullet If we choose *^m* to be even, we can optimally share source/drain regions of the *ⁿ*MOS transistors in the bias circuit.
- \bullet If we choose $n = m + 1$, we have as many *p*MOS strips as *ⁿ*MOS strips.

