Analog and Digital: What Isn't the Difference?

Everybody knows that...

```
Digital≡"Discrete"
Analog≡"Continuous"
```

...right?

Analog and Digital: What Isn't the Difference?

Discrete Signal/Continuous Signal

Discrete Time/Continuous Time

Asynchronous Digital

Self-timed circuits Delay insenstive circuits Digital memories

Continuous-Time Analog

Active and passive filters Operational amplifiers RF communication systems

Synchronous Digital

Microprocessors Digital signal processors

Discrete-Time Analog

Switched capacitor circuits Switched current circuits Charge-coupled devices

Analog and Digital: What Isn't the Difference?

So...

Digital≠"Discrete Time"

Analog ≠ "Continuous Time"

but is

Digital≡"Discrete Signal"

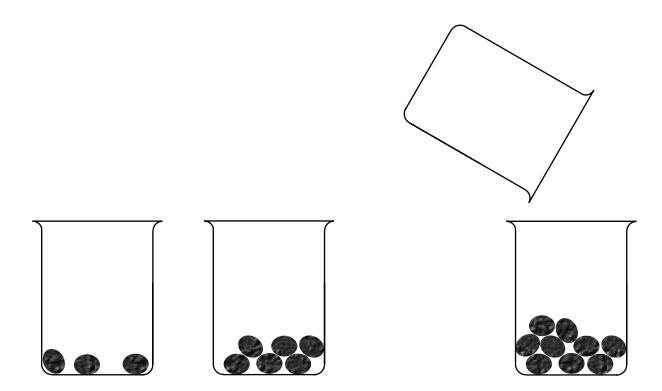
Analog ≡ "Continuous Signal"

222

Analog Computation

- Numbers are represented by the magnitues of physical quantities. (e.g., length, weight, current, voltage)
- These quantities are combined or altered in ways that are *analogous* to the operations that we want to perform on the numbers that they represent.
- The computation is a kind of physical experiment and the result is ascertained by a measurement process.
- Precision is limited by noise, by device mismatch, and by measurement inaccuracies.

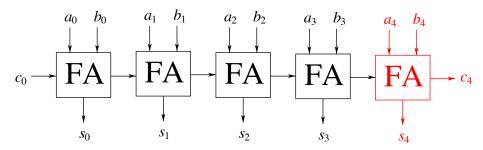
Analog Computation



Digital Computation

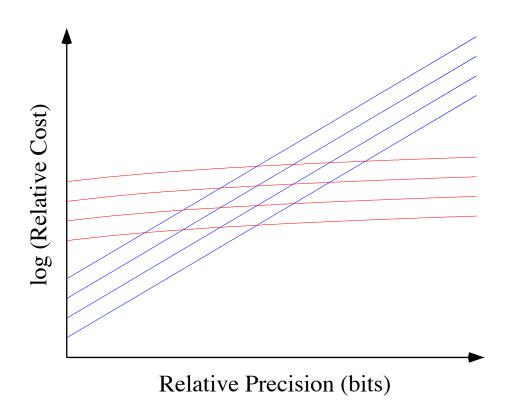
- Numerals are represented by the presence or absence of physical quantities.
- The presence or absence of these tokens are altered according to prescribed rules (e.g., a truth table) to perform some operation.
- The result is available in symbolic form and is ascertained by a *counting* process.
- Precision is limited only by the number of discrete states representable by the physical quantities used.

Digital Computation

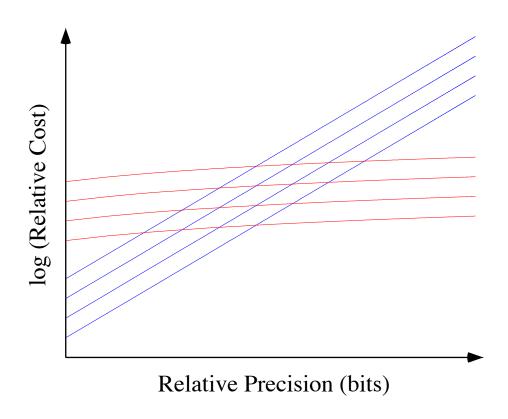


Analog vs. Digital: The Cost of Precision

➤ Analog: Cost grows as a power law of precision.



Digital: Cost grows as the logarithm of precision.


Analog vs. Digital: The Cost of Precision

- Analog: Low initial cost, high marginal cost.
- Digital: High initial cost, low marginal cost.

Analog vs. Digital: The Cost of Precision

⇒ When precision requirements are low, Analog can be very cost effective, but when precision requirements are high, Digital is your best bet...

Analog vs. Digital: The "Real" Cost (i.e., \$\$)

- Analog: Full-custom designs
 - Functionality tied to device details
 - Not many high-level behavioral abstractions
 - Few EDA tools available
 - Not-so-rapid prototyping
 - Few devices, relatively long design time
- Digital: Synthesized or semi-custom designs
 - Functionality not critically dependent on device details
 - Good high-level behavioral abstractions
 - Many EDA tools available
 - Rapid prototyping (e.g., FPGAs)
 - Many devices, relatively short design time

