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6 Incremental Driving-Point Transfer Function Calcu-

lation of CMOS Circuits by Source Splitting

In this section, we shall illustrate the use of (voltage) source splitting to aid in the calculation
of the incremental driving-point transfer functions of circuits made from MOS transistors,
illustrating the technique by applying it to calculating the incremental input and output
resistances of several simple circuits.

6.1 Incremental Transconductance Gain of a Source-Degenerated

MOS Transistor

In this section, we shall derive a useful result, which gives the change in the channel current
of a saturated MOS transistor in response to a small change in the gate voltage with source
degeneration. If the source voltage were fixed, the change in the saturation current due
to a small change in the gate voltage would be given by δIsat = gmδVG. However, if the
source voltage were connected to another device or circuit with a finite incremental terminal
resistance, RX, as shown on the left in Fig. 1, then the change in the saturation current
also must flow into the terminal of X, causing VS to increase. This increase in VS, in turn,
reduces the original increase in Isat caused by the change in VG. In such cases, the effective
transconductance of the MOS transistor is reduced or degenerated from its value with VS

held constant, whence the name source degeneration.
We can write the change in the channel current of the MOS transistor due to the change

in both the gate voltage and the source voltage as

δIsat = gmδVG − gsδVS.

This same current increase also must flow into the other part of the circuit, so we can also
write that

δIsat =
δVS

RX
.

Figure 1: Incremental transconductance gain of an MOS transistor with source degenera-
tion.
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Figure 2: Stacked current mirror.

By equating these, we can solve for the change in the source voltage, which is given by

δVS =
gmRX

1 + gsRX
· δVG.

We can substitute this result into the second equation for δIsat to find that

δIsat =
gm

1 + gsRX

· δVG,

from which it follows that the incremental transconductance of the MOS transistor with
source degeneration is given by

Gm =
δIsat
δVG

=
gm

1 + gsRX

.

We shall make use of this result again and again in performing incremental circuit analyses.

6.2 Source Splitting and Incremental DP Transfer Functions

In this section, we shall illustrate the process of calculating incremental driving-point resis-
tances/conductances using source splitting and superposition via several worked examples.
For our first pair of examples, we shall determine the incremental input and output resis-
tances of the stacked cascode current mirror, shown in Fig. 2, using source splitting and
superposition. We shall assume that all four nMOS transistors are identical and that the
output voltage, Vout, is sufficiently far above ground to keep both output transistors satu-
rated.

Example 6.1
To compute the incremental output resistance of the stacked mirror, we simply change the
output voltage by a small amount, δVout, and see how much additional current, δIout, goes
into the circuit. The ratio δVout/δIout gives us the incremental output resistance. To facilitate
the calculation, we can apply voltage source splitting to Vout and superposition, as shown in
Fig. 3.
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The only nonzero components of δIout occur when we change the first replica test voltage
source, because the second one is connected to the drain of the (saturated) cascode transistor.
We can write δIout as

δIout =
δVout

ro + (ro‖1/gs)︸ ︷︷ ︸
δIout11

(
1− gs

gs + (1/ro)︸ ︷︷ ︸
δIout21/δIout11

)

=
δVout

ro + (ro‖1/gs) ·
1/ro

gs + (1/ro)

=
δVout

ro + (ro‖1/gs) ·
1

gsro + 1
,

which implies that the incremental output resistance is given by

Rout =
δVout

δIout
= (gsro + 1) (ro + (ro‖1/gs)) ≈ (gsro) ro,

because gsro � 1.

Example 6.2
To calculate the incremental input resistance of the stacked mirror, it is convenient to apply
a voltage source, whose value is equal to the quiescent value of Vin, to the input node
and change Vin by δVin and calculate how much additional current goes into the circuit, as
shown in Fig. 4. As we did in computing the incremental output resistance, we shall apply
voltage-source splitting and superposition to facilitate the calculation. For each of the two
simple current mirrors in the stack, we have a choice about whether or not to account for
the Early effect on the input side of the circuit. The Early-effect resistors each effectively
appear in parallel with a driving-point resistance that is on the order of 1/gs. Because
1/gs � ro, it follows that 1/gs‖ro ≈ 1/gs, which implies that these Early-effect resistors
will have a negligible effect on the calculation. Neglecting the Early effect when possible
greatly simplifies the analysis process. While accounting for the Early effect here is not

(a) (b)

Figure 3: Calculation of the incremental output resistance of the stacked current mirror.
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“wrong,” it can certainly be counter productive. Unnecessarily accounting for the Early
effect complicates greatly the expressions that we get out of the analysis process, which
makes them harder to interpret. It also increases our chances of making an error along the
way. Learning to recognize where the Early effect is negligible and where it is not is an
important bit of circuit intuition to develop.

If we neglect the Early effect on the input side of the circuit, after we apply the test
voltage source to the input and split it, we have the circuit shown in Fig. 5a. The only
nonzero components of δIin occur when we change the input voltage source on the second
branch, as shown in Fig. 4b. Of these, the only nonzero component occurs in the third
branch. So, we can write δIin as

δIin =
gmδVin

1 + gs (1/gm)︸ ︷︷ ︸
δIin32

=
gmδVin

1 + (1/κ)
=

κ

κ+ 1
· gmδVin,

which implies that the incremental input resistance is given by

Rin =
δVin

δIin
=

κ + 1

κ
· 1

gm
.

If we had not neglected the Early effect on the input side of the circuit, we would have
the situation depicted in Fig. 6 after applying the test input voltage source and splitting it.
Of the sixteen components of δIin, the only nonzero ones occur when we change the input
voltage sources on the second and fourth branches. Each of these two cases is illustrated in
Fig. 7. By inspection of these circuits, we can write the incremental input current as

δIin =
gmδVin

1 + gs (ro‖ro‖1/gm)︸ ︷︷ ︸
δIin32

(
1− 1/ro

(2/ro) + gm︸ ︷︷ ︸
δIout42/δIout32

)

+
δVin

ro + (1/gs‖1/gm‖ro)︸ ︷︷ ︸
δIin44

(
1− gs

gs + gm + (1/ro)︸ ︷︷ ︸
δIout34/δIout44

)

Figure 4: Set-up to determine the incremental input resistance of the stacked current mirror
using the voltage-source method.
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(a) (b)

Figure 5: Calculation of the incremental input resistance of the stacked current mirror
using voltage-source splitting and superposition under the assumption that the Early effect
is negligible.

=
gmδVin

1 + gs (ro/2‖1/gm) ·
gmro + 1

gmro + 2
+

δVin

ro + ((1/gs‖1/gm) ‖ro) ·
gmro + 1

(gs + gm) ro + 1
,

which implies that the incremental input resistance is given by

Rin =
δVin

δIin

=

((
1

gm
+

1

κ

(
ro
2

∥∥∥∥∥ 1

gm

))
gmro + 2

gmro + 1

)
∥∥∥∥∥
((

ro +

((
1

gs

∥∥∥∥∥ 1

gm

) ∥∥∥∥∥ro
))

(gs + gm) ro + 1

gmro + 1

)

Figure 6: Calculation of the incremental input resistance of the stacked current mirror
using voltage-source splitting and superposition with the Early effect.

5



Figure 7: Continuation of the calculation of the incremental input resistance of the stacked
current mirror using voltage source splitting and superposition with the Early effect.

Figure 8: Wilson current mirror.

≈
(

1

gm
+

1

κ
· 1

gm

)∥∥∥∥∥
((

ro +

(
1

gs

∥∥∥∥∥ 1

gm

))
gs + gm
gm

)

≈
(
κ + 1

κ
· 1

gm

)∥∥∥∥∥
(
κ+ 1

κ
· ro

)

=
κ+ 1

κ

(
1

gm

∥∥∥∥∥ro
)

≈ κ+ 1

κ
· 1

gm
,

where all of the approximations that we just made follow from the fact that gsro � 1. This
result is precisely what we found before with a whole lot less difficulty by neglecting the
Early effect.

Next, we shall determine the incremental input and output resistances of the Wilson
current mirror, shown in Fig. 8, using source splitting and superposition. We shall assume
that all three nMOS transistors are identical and that the output voltage, Vout, is held
sufficiently far above ground to keep the output transistor, M3, saturated.
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Example 6.3
To calculate the incremental input resistance of the Wilson mirror, it is convenient again to
apply a voltage source, whose value is equal to the quiescent value of Vin, to the input node
and change Vin by δVin and calculate how much additional current goes into the circuit, as
shown in Fig. 9. As we did in computing the incremental input and output resistances of
the stacked mirror, we shall apply voltage-source splitting and superposition to facilitate the
calculation. Also, we shall neglect the Early effect for each of the three transistors in the
circuit, because transistor M1 is effectively diode connected through M3 and M2, because M2

is actually diode connected, and because the drain of M3 is held fixed for this calculation.
After we apply the test voltage source to the input and split it, we have the circuit shown

in Fig. 10a. The only nonzero components of δIin occur when we change the input voltage
source on the second branch, as shown in Fig. 10b. Of these, the only nonzero component
occurs in the third branch. So, we can write δIin as

δIin =
gmδVin

1 + gs (1/gm)︸ ︷︷ ︸
δIin32

=
gmδVin

1 + (1/κ)
=

κ

κ+ 1
· gmδVin,

which implies that the incremental input resistance is given by

Rin =
δVin

δIin
=

κ + 1

κ
· 1

gm
.

Thus, the incremental input resistance of the Wilson mirror is the same as that of the stacked
mirror.

Example 6.4
To compute the incremental output resistance of the Wilson mirror, we simply change the
output voltage by a small amount, δVout, and see how much additional current, δIout, goes
into the circuit. The ratio δVout/δIout gives us the incremental output resistance. To facilitate
the calculation, we can apply voltage source splitting to Vout and superposition, as shown in
Fig. 11. As with the stacked mirror, the only nonzero components of δIout occur when we

Figure 9: Set-up to determine the incremental input resistance of the Wilson current mirror
using the voltage-source method.
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(a) (b)

Figure 10: Calculation of the incremental input resistance of the Wilson current mirror
using voltage-source splitting and superposition.

change the first replica test voltage source, as shown in Fig. 11b, because the second one is
connected to the drain of M3, which we have assumed to be saturated. We can write δIout
as

δIout =
δVout

ro + (1/GS‖1/gm)︸ ︷︷ ︸
δIout11

(
1− GS

gm +GS︸ ︷︷ ︸
δIout21/δIout11

)

≈ δVout

ro

(
1− GS

gm +GS

)

=
δVout

ro
· gm
gm +GS

,

where GS denotes the effective incremental conductance looking into the source of M3, gm
is the incremental conductance looking into the gate/drain of M2, and the approximation
follows from the fact that 1/gm � ro, regardless of the precise value of GS. Recall that gs
denotes the incremental conductance of the source of a saturated MOS transistor with the

(a) (b)

Figure 11: Calculation of the incremental output resistance of the Wilson current mirror.
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(a) (b)

(c) (d)

Figure 12: Auxiliary calculation of the incremental source conductance of M3 including
the effect of the changing input voltage.

gate voltage fixed, which is not the case in the Wilson mirror. The incremental current that
flows through M2 is mirrored by M1 to the input of the circuit. Because Iin has not changed,
Vin, which is the gate voltage of M3 will decrease in response.

To compute GS, we can recursively apply voltage-source splitting and superposition on
the relevant part of the circuit, as shown in Fig. 12a and Fig. 12b. Each of the two replica
test voltage sources elicits a single nonzero component of the current flowing into the source
of M3, IS, as shown in Fig. 12c and Fig. 12d. By inspection of these circuits, we can write
δIS as

δIS = −gm (−gmroδV )︸ ︷︷ ︸
δVin︸ ︷︷ ︸

δIS21

+ gsδV︸ ︷︷ ︸
δIS22

= gs (κgmro + 1) δV,

whence it follows that

GS =
δIS
δV

= gs (κgmro + 1) ≈ (gmro) gm,

where the approximation follows from gmro � 1. Thus, we have that the incremental output
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Figure 13: A simple current mirror with a regulated cascode.

resistance of the Wilson mirror is given approximately by

Rout =
δVout

δIout
≈
(
GS

gm
+ 1

)
ro ≈

(
gmro · gm

gm
+ 1

)
ro = (gmro + 1) ro ≈ (gmro) ro,

where all of these approximations again follow from the fact that gmro � 1. Thus, the
incremental output resistance of the Wilson mirror is on the same order as that of the
stacked mirror.

Finally, we shall calculate the incremental output resistance of the circuit shown in
Fig. 13. This circuit is a simple current mirror with a regulated cascode on the output
branch. In a regulated cascode, the cascode bias voltage, Vc, is not fixed, but rather is set by
a simple amplifier, comprising the bias current source, Ib, and transistor M4, connected in a
negative feedback loop, whose goal is to regulate the voltage, V , which is the voltage across
the output transistor of the simple mirror, M2. We shall assume that all of the transistors
are matched. Also, we shall assume that Vout is high enough to keep M3 in saturation and
that transistors M2 and M4 are also operating in saturation. Note that transistors M2 and
M3 are connected in series and must passing the same saturation current. Thus, they will
both have the same value of gm and ro. However, transistor M4 will be passing Ib, which is,
in general, different from Iout, so it will have a different set of incremental parameters, which
we shall denote by gm4 and ro4.

Example 6.5
To compute the incremental output resistance of the circuit of Fig. 13, we simply change
the output voltage by a small amount, δVout, and see how much additional current, δIout,
goes into the circuit, as shown in Fig. 14a and Fig. 14b. The ratio δVout/δIout gives us the
incremental output resistance. To facilitate the calculation, we can apply voltage source
splitting to Vout and superposition, as shown in Fig. 14c. As with the stacked mirror and the
Wilson mirror, the only nonzero components of δIout occur when we change the first replica
test voltage source, as shown in Fig. 11b, because the second one is connected to the drain
of M3, which we have assumed to be saturated. We can write δIout as

δIout =
δVout

ro + (1/GS‖ro)︸ ︷︷ ︸
δIout11

(
1− GS

GS + (1/ro)︸ ︷︷ ︸
δIout21/δIout11

)
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(a) (b)

(c) (d)

Figure 14: Calculation of the incremental output resistance of a regulated cascode.

=
δVout

ro + (1/GS‖ro) ·
1/ro

GS + (1/ro)

=
δVout

ro + (1/GS‖ro) ·
1

GSro + 1
,

where GS again denotes the effective incremental conductance looking into the source of M3.
As with the Wilson mirror, the incremental conductance looking into the source of M3 is not
simply gs, because its gate voltage, Vc, also changes as V changes by δV .

As we did with the Wilson mirror, to compute GS, we can recursively apply voltage-
source splitting and superposition on the relevant part of the circuit, as shown in Fig. 15a
and Fig. 15b. Each of the two replica test voltage sources elicits a single nonzero component
of the current flowing into the source of M3, IS, as shown in Fig. 15c and Fig. 15d. By
inspection of these circuits, we can write δIS as

δIS = −gm (−gm4ro4δV )︸ ︷︷ ︸
δVc︸ ︷︷ ︸

δIS21

+ gsδV︸ ︷︷ ︸
δIS22

= gs (κgm4ro4 + 1) δV,

whence it follows that

GS =
δIS
δV

= gs (κgm4ro4 + 1) ≈ (gm4ro4) gm,
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(a) (b)

(c) (d)

Figure 15: Auxiliary calculation of the incremental source conductance of M3 including
the effect of the changing cascode bias voltage.

where the approximation follows from gm4ro4 � 1. Using this result, we can write the output
resistance of the circuit of Fig. 13 as

Rout =
δVout

δIout

=

(
ro +

(
1

GS

∥∥∥∥∥ro
))

(GSro + 1)

≈
(
ro +

(
1

gm
· 1

gm4ro4

∥∥∥∥∥ro
))

(gmro · gm4ro4 + 1)

≈ ro · gmro · gm4ro4,

which is larger than the output resistance of a single transistor by a factor of the product of
the intrinsic gain factors of transistors M3 and M4.

7 Incremental Voltage Gain Calculation of CMOS Cir-

cuits by Node Fixing

In this section, we shall illustrate the node fixing technique, which we developed earlier in
the semester, for calculating the incremental voltage gain of CMOS circuits with several
worked examples.
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(a) (b)

Figure 16: Source follower circuit.

For our first example of incremental gain calculation by node fixing, we shall compute the
incremental voltage gain of an nMOS source follower, shown in Fig. 16. For this calculation,
we shall assume that both transistors are matched. Further, we shall assume that Vin is far
enough above ground that transistor Mb is saturated and that Vin cannot exceed VDD. Under
these assumptions, M1 (i.e., the source-follower transistor) will always be saturated in this
circuit. To see why, we note that the drain of the source-follower transistor is connected to
VDD. The smallest value that the VDS of M1 reaches for any value of Ib is achieved when
Vin is equal to VDD. Thus, if M1 is saturated for this value of VDS, it must be saturated for
all other values of Vin, too. However, when Vin is equal to VDD, both the gate and drain
are at the same potential, which is equivalent to M1 being diode connected. Because the
diode-connected transistor operates in saturation for all appreciable current levels, then so
will transistor M1. Both transistors pass the same current, so both transistors will have the
same small-signal parameter values. The output voltage will be just far enough below Vin

that the saturation current of M1 is equal to Ib.

Example 7.1
We begin by connecting a test voltage source to the output of the circuit whose value we
have adjusted to match the quiescent output voltage, as shown in Fig. 17a. At this point, the
circuit exchanges no current with the test source, as shown in Fig. 17b. We can compute the
incremental output resistance of this circuit, as shown in Fig. 17c, by increasing Vout by δVout

and determining how much current flows into the circuit. Assuming that gsro � 1, neither
Early-effect resistor will have an impact on the value of Vout, because they both appear
in parallel with the incremental source conductance of M1. In this case, the incremental
output resistance is simple enough that we should not need to use voltage source splitting
and superposition—its value is simply given by

Rout =
1

gs
.

To compute the incremental transconductance gain of the circuit, we restore the test source
back to its original value and increase Vin by δVin. Under these circumstances, the current
in M1 will increase by

δI1 = gmδVin,
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(a) (b) (c) (d)

Figure 17: Calculation of the incremental voltage gain of the source follower by node fixing.

which all flows into the output test source, so

δIout = δI1 = gmδVin,

which implies that

Gm =
δIout
δVin

= gm.

Thus, the incremental gain of the source follower is given by

A =
δVout

δVin

= GmRout = gm · 1

gs
= κ,

which is what we found earlier in the course by finding Vout as a function of Vin and differ-
entiating the resulting expression.

For our next example, we shall calculate the incremental voltage gain of an improved
version of the source follower, called the super source follower, which is shown in Fig. 18. To
the simple source follower of Fig. 16, we add two pMOS transistors, which provide negative
feedback that serves to reduce the incremental output resistance of the circuit over that of the
simple source follower. For this calculation, we shall assume that all three nMOS transistors
are matched and that both pMOS transistors are matched. We shall also assume that Vin

is sufficiently far above ground that M2a and M2b are both saturated and that Vin cannot
exceed VDD. We shall also assume that Vbn has been set so that the saturation currents of
M2a and M2b are Ib and that Vbp has been set so that the saturation current of M3 is also
Ib.

Let us start by assuming all of the transistors in the circuit are saturated. In the steady
state, KCL implies that the current flowing through M1 must equal that flowing through
M3. If M3 operates in saturation, then this current would be Ib. Moreover, if the current
flowing through M1 is Ib, then KCL implies that the current flowing through M4 must also
equal Ib, because a total of 2Ib is sunk by the nMOS bias transistors. If M4 is saturated and
if its Early effect were not too severe, then its gate voltage, V , would have to be nearly equal
to Vbp in order for it to pass a current of Ib. From this, we can conclude that M3 must be
saturated, because its gate and drain voltages are nearly equal, making it effectively diode
connected. Moreover, in order for transistor M1 to pass Ib, it must have a finite positive
VDS, which implies that V must be greater than Vout. This fact, in turn, implies that M4 has
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(a) (b)

Figure 18: Super source follower circuit.

a larger VSD than does M3. Therefore, if M3 is guaranteed to be saturated, then so is M4.
Transistors M2a and M2b are saturated by hypothesis, leaving us to consider whether or not
transistor M1 will be saturated.

If M1 were saturated, then using the EKV model and equating the saturation currents
of M1 and M2a, we can show that

Vout = κn (Vin − Vbn) ,

regardless of whether Vbn < VT0, Vbn ≈ VT0, or Vbn > VT0, just like for the simple source
follower. Of course, from this result, we can compute the incremental gain of the super
source follower directly by differentiating Vout with respect to Vin. Nevertheless, we shall
proceed to calculate the incremental gain of this circuit by node fixing in order to illustrate
the technique. Now, in order for M1 to be saturated, we must have that

VDS = V − Vout = Vbp − κn (Vin − Vbn) ≥ VDSsat,

(a) (b)

Figure 19: Fixing the output voltage of the super source follower.
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(a) (b)

Figure 20: Calculation of the incremental output resistance of the super source follower
with no applied input signal by voltage source splitting.

which translates into an upper limit on Vin given by

Vin ≤ Vbn +
Vbp − VDSsat

κn
.

For typical values of Vbn, Vbp, and κn, this upper limit exceeds VDD, which we supposed to
be the upper limit on Vin. Thus, under most circumstances, M1 will operate in saturation
and the quiescent output voltage will be given by the expression that we just obtained for
Vout.

Example 7.2
We begin by connecting a test voltage source to the output of the circuit whose value we
have adjusted to match the quiescent output voltage, as shown in Fig. 19a. At this point,
the circuit exchanges no current with the test source, as shown in Fig. 18b. We can compute
the incremental output resistance of this circuit, as shown in Fig. 20a, by increasing Vout by
δVout and determining how much current flows into the circuit. As with the simple source
follower, assuming that gsro � 1, we should expect that the Early-effect resistors of M2a,
M2b, and M4, will not have a large impact on the value of Rout, because they both appear
in parallel with the incremental source conductance of M1, which is saturated under most
conditions, so we shall not include these in the calculation. We shall, however, include the
Early-effect resistors of transistors M1 and M3, as shown in Fig. 20a, because if we were
not to include these, there would be no place for a change in the current in M1 to go when
it gets to node V . Otherwise a change in this current, no matter how small, would drive
either M1 or M3 into the ohmic region, depending on whether the current in M1 increased
or decreased.

Next, we split Vout into four replica sources, as shown in Fig. 20b. For convenience, we
have left the drains of M2a and M2b tied together. Because their gate voltages are tied to
a constant potential and they are saturated, they will not impact the calculation of Rout.
We shall compute each of the components of δIout due to each of the replica test sources
individually and assemble them into the total δIout using superposition. The only nonzero
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(a) (b)

Figure 21: The only nonzero components of δIout occur when we apply δVout to the replica
sources on (a) branch 2 and (b) branch 3.

components of δIout occur when we change the value of the replica sources on branches 2
and 3, as shown in Fig. 21a and Fig. 21b. By inspection of these circuits, we can write the
total output current as

δIout = gs1δVout︸ ︷︷ ︸
δIout22

(
1− ro3

ro1 + ro3︸ ︷︷ ︸
δIout32/δIout22

)
+ gm4

(
gs1δVout︸ ︷︷ ︸
δIout22

(ro1‖ro3)

︸ ︷︷ ︸
δV

)

︸ ︷︷ ︸
δIout42

+
δVout

ro1 + ro3︸ ︷︷ ︸
δIout33

+ gm4 · ro3
ro1 + ro3

· δVout︸ ︷︷ ︸
δV︸ ︷︷ ︸

δIout43

= gs1δVout

(
ro1

ro1 + ro3
+ gm4 (ro1‖ro3)

)
+

ro3
ro1 + ro3

· δVout

(
1

ro3
+ gm4

)

= gs1 (ro1‖ro3) δVout

(
1

ro3
+ gm4

)
+

ro1‖ro3
ro1

· δVout

(
1

ro3
+ gm4

)

= (ro1‖ro3)
(

1

ro3
+ gm4

)(
gs1 +

1

ro1

)
δVout

≈ gs1gm4 (ro1‖ro3) δVout,

where the approximation follows from the fact that gs1ro1 � 1 and that gm3ro4 � 1. Tran-
sistors M3 and M4 are matched and carrying the same quiescent current, so their gm and ro
values will be equal, so if gm3ro3 � 1 and gm4ro4 � 1 then it also follows that gm3ro4 � 1.
Thus, the incremental output resistance of the circuit is given by

Rout =
δVout

δIout
=

1

gs1
· 1

gm4 (ro1‖ro3) � 1

gs1
,
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Figure 22: Calculation of the incremental transconductance gain of the super source fol-
lower with the output voltage fixed.

which was the incremental output resistance of the simple source follower. Note that this
result also validates our assumption that the Early-effect resistors of M2a, M2b, and M4

would have a negligible impact on the calculation, because they would have appeared in
parallel with this very small output resistance.

Next, we must determine the incremental transconductance gain of the circuit from input
to output with the output voltage fixed, as shown in Fig. 22.

δIout = gm1δVin︸ ︷︷ ︸
δI1

(
1− ro3

ro1 + ro3︸ ︷︷ ︸
δI/δI1

)
+ gm4

(
gm1δVin︸ ︷︷ ︸
δI1

(ro1‖ro3)

︸ ︷︷ ︸
δV

)

︸ ︷︷ ︸
δI4

= gm1δVin

(
ro1

ro1 + ro3
+ gm4 (ro1‖ro3)

)

= gm1 (ro1‖ro3) δVin

(
1

ro3
+ gm4

)
≈ gm1gm4 (ro1‖ro3) δVin,

where the approximation follows from the fact that gm4ro3 � 1, as we just argued was the
case. Thus, we have that the incremental transconductance gain of the circuit is given by

Gm =
δIout
δVin

≈ gm1gm4 (ro1‖ro3) ,

so the incremental voltage gain of the circuit is given by

A =
δVout

δVin
= GmRout =

gm1gm4 (ro1‖ro3)
gs1gm4 (ro1‖ro3) =

gm1

gs1
= κn,

which is what we would have found originally by differentiating Vout with respect to Vin.
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(a) (b)

Figure 23: Simple differential amplifier circuit.

For our next example, we shall calculate the incremental differential-mode voltage gain
of the simple five-transistor differential amplifier, shown in Fig. 23. For this calculation,
we shall assume that all three nMOS transistors are matched, that the pMOS transistors
are matched, and that Vcm is high enough to ensure that the bias transistor operates in
saturation. Also, we shall assume that M1 always operates in saturation, which will usually
be the case. Because M3 is diode connected, the question of whether or not M1 is saturated
is very similar to the one we addressed for M1 in the super source follower example. We
would like to determine what the quiescent output voltage of the circuit shall be under these
conditions in order to decide whether or not M2 and M4 will operate in saturation. If there
were no Early effect, the output voltage would be indeterminate for this circuit, because any
value of Vout for which both M2 and M4 are saturated will satisfy KCL. To determine the
actual quiescent output voltage, we must consider the Early effect in our reasoning process.

We know that the sources of M1 and M2 are tied together and that their gates are at the
same potential; thus, they operate on the same drain characteristic. If one of these transistors
has a larger voltage across it, it will be biased further into saturation and, because of the
Early effect, will have a larger channel current. The only point at which both transistors
will pass the same current is the one at which they have the same drain-to-source voltage.
Likewise, the gates of M3 and M4 are tied together as are their sources, which means that
they too operate on the same drain characteristic. Consequently, the one with the larger
voltage across it must also pass a larger channel current and the only point at which their
channel currents are equal is that at which they have equal source-to-drain voltages.

Because M3 is diode connected, we know that V3 will adjust itself so that the current
flowing through M1 is equal to that flowing through M3 in the steady state. Now, if Vout

were larger than V3, then M2 would have more voltage across it than would M1, and we
know that the current flowing through M2 would exceed that flowing through M1. Under
these circumstances, we also know that M4 would have less voltage across it than would M3,
which means that the current flowing through M4 would be less than that flowing through
M3. Therefore, if Vout were higher than V3, M2 would be sinking more current from the
output node than M4 would be supplying and Vout would have to decrease as the output
node is discharged, reducing the difference between Vout and V3. On the other hand, if Vout
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(a) (b)

Figure 24: Fixing the output voltage of the simple differential amplifier.

were lower than V3, M2 would have less voltage across it than would M1 and, thus, M2 would
be passing less current than M1. Also, M4 would have more voltage across it than would
M3, so M4 would be passing a larger current than M3. Consequently, M4 would be passing a
larger current than M2. Thus, if Vout were lower than V3, M4 would be sourcing more current
onto the output node than M2 would be sinking, and Vout would increase, again reducing
the difference between Vout and V3. So, we have that if Vout were different from V3, that
situation would not persist, and Vout would eventually become equal to V3. Now, if M1 is
saturated, then so is M2, because they each have the same drain-to-source voltage. Likewise,
if M3 is saturated, then so is M4. So, M2 and M4 both operate in saturation under these
circumstances.

Example 7.3
We begin the node-fixing process by connecting a test voltage source to the output of

(a) (b)

Figure 25: Calculation of the incremental output resistance of the differential amplifier
with no applied input signal by voltage source splitting.
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(a)

(b)

Figure 26: The only nonzero components of δIout occur when we apply δVout to the replica
sources on (a) branch 1 and (b) branch 3.

the circuit whose value we have adjusted to match the quiescent output voltage, which we
have just established is equal to the value of V3, as shown in Fig. 24a. At this point, the
circuit exchanges no current with the test source, as shown in Fig. 24b. We can compute
the incremental output resistance of this circuit, as shown in Fig. 25a, by increasing Vout by
δVout and determining how much current flows into the circuit. Because M2 and M4 are both
saturated and their drains are the only things connected to the output node, we must include
Early-effect resistors for these transistors, as shown in Fig. 25a, in our calculation of the
amplifier’s output resistance, otherwise we should conclude that the output resistance, and,
therefore, the circuit’s differential-mode gain is infinite. All of the other Early-effect resistors
would appear in parallel with device terminals which have a comparably high incremental
conductance, which means that the Early-effect resistors would shunt away a negligible
amount of current from these other terminals, and, therefore, we should expect that they
will have a negligible effect on the calculation.

Next, we split Vout into four replica sources, as shown in Fig. 25b. We shall compute each
of the components of δIout due to each of the replica test sources individually and assemble
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(a) (b)

Figure 27: Calculation of the incremental transconductance gain of the simple differential
amplifier with the output voltage fixed by superposition.

them into the total δIout using superposition. The only nonzero components of δIout occur
when we change the value of the replica sources on branches 1 and 3, as shown in Fig. 26a
and Fig. 26b. By inspection of these circuits, we can write the total output current as

δIout =
δVout

ro4︸ ︷︷ ︸
δIout11

+
δVout

ro2 + (1/gs1‖1/gs2)︸ ︷︷ ︸
δIout33

(
1− gs2

gs1 + gs2︸ ︷︷ ︸
δIout43/δIout33

+

δIout23/δIout33︷ ︸︸ ︷
gs1

gs1 + gs2

)

=
δVout

ro4
+

δVout

ro2 + (1/2gsn)

(
1− gsn

2gsn
+

gsn
2gsn

)

≈ δVout

ro4
+

δVout

ro2
,

where we have made use of the fact that, at the quiescent operating point, gs1 = gs2 = gsn,
because M1 and M2 are matched and both have a quiescent channel current of Ib/2, and
the approximation follows from the fact that gs2ro2 � 1. Thus, the incremental output
resistance of the circuit is given approximately by

Rout =
δVout

δIout
≈ ro2‖ro4.

Next, we must determine the incremental transconductance gain of the circuit from input
to output with the output voltage fixed, as shown in Fig. 27. Because the output voltage
source maintains the voltage across ro4 constant, the current flowing through it will not
change for this calculation, so it will have no impact on the calculation whatsoever. Because
the source conductances of M1 and M2 are much larger than 1/ro2, any current diverted
by ro2 from the sources of M1 and M2 would represent a negligible loss from that which
flows into the sources of M1 and/or M2, so we would expect it too to have a negligible
impact on this calculation. Consequently, we shall omit both in calculating the circuit’s
incremental transconductance gain, as shown in Fig. 27. Also, as indicated in Fig. 23b, we
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shall apply a pure differential-mode input to the circuit for this calculation, which means
that we apply half of δVdm to the noninverting input and half of δVdm to the inverting input
so that the common-mode input voltage remains unchanged. To compute δIout, we shall
apply superposition, considering the effect of each half of δVdm separately and superposing
the resulting components of δIout, as shown in Fig. 27.

First, we consider increasing the gate of M1 by δVdm/2, as shown in Fig. 27a. This
increase in the gate voltage of M1 results in an increase in its channel current, δI1, given by

δI1 =
gm1δVdm/2

1 + gs1 (1/gs2)
=

gmn

4
· δVdm,

where we have again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
Now, this incremental current flowing into the drain of M1 also flows out of the gate/drain
of M3 and is reflected to the output by the pMOS current mirror, as shown in Fig. 27a. It
also flows out of the source of M1 and into the the source of M2 and out of the circuit, as
shown. Note that the total current in M2 still flows from drain to source. By indicating
that the incremental current flows up into the source of M2 is that the total current in M2 is
decreasing relative to its quiescent value. Recall that KCL implies that, in the steady state,
the sum of the currents flowing through M1 and M2 must equal the bias current Ib. If the
current in M1 has increased by some amount, the current flowing through M2 by an equal
amount so that their sum remains unchanged. Thus, the first component of the incremental
output current is given by

δIout1 = 2δI1 =
gmn

2
· δVdm.

Next, we consider decreasing the gate of M2 by δVdm/2, as shown in Fig. 27b. This
decrease in the gate of M2 results in a decrease in its channel current, δI2, whose magnitude
is given by

δI2 =
gm2δVdm/2

1 + gs2 (1/gs1)
=

gmn

4
· δVdm,

where we have once again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
This decrease in the current flowing through M2 again can be thought of as a positive
incremental current flowing from source of M2 to its drain and out of the circuit, as shown in
Fig. 27b. This incremental current must come from the source of M1. It also flows through
the channel of M1 and from the input of the pMOS current mirror, which reflects the current
increase to the output through M4, as shown in Fig. 27b. Thus, the second component of
δIout is given by

δIout2 = 2δI2 =
gmn

2
· δVdm.

Superposing these two components of the output currents, we obtain the total incremental
output current as

δIout = δIout1 + δIout2 = gmnδVdm,

which implies that the incremental transconductance gain of the circuit with the output
voltage held fixed is given by

Gm =
δIout
δVdm

= gmn.
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(a) (b)

Figure 28: Simple differential amplifier connected as a unity-gain follower.

Therefore, the incremental differential-mode gain of the circuit is given approximately by

Adm =
δVout

δVdm
= GmRout ≈ gmn (ro2‖ro4) .

For our next example, we shall use node fixing to calculate the incremental voltage gain
of the simple five-transistor differential amplifier configured as a unity-gain follower with
its output connected to its inverting input, as shown in Fig. 28. As with the last example,
we shall assume that all three nMOS transistors are matched, that the pMOS transistors
are matched, and that Vin is high enough to ensure that the bias transistor operates in
saturation. Also, we shall assume thatM1 andM3 operate in saturation for all possible values
of Vin. In this circuit, M2 is diode connected and so operates in saturation. Moreover, the
output voltage (i.e., the drain/gate of transistor M2), adjusts itself relative to the common-
source node voltage so that M2 passes the current being supplied by M4. If M4 operates
in saturation, then this current is a mirror copy of the channel current of M1. If the Early
effect is small, then these currents will be equal. Because M1 and M2 are matched and are
both operating in saturation, they must have nearly equal gate-to-source voltages if they
pass the same channel current. Because their sources are shorted together, nearly equal
gate-to-source voltages also translates into nearly equal gate voltages. So, Vout will be very
nearly equal to Vin. The story will be somewhat different if Vin is within a saturation voltage
of VDD. In this case, M4 will not be saturated, and so the current flowing M2 will be smaller
than that flowing in M1, because the current flowing in M4 will be smaller than that flowing
in M3. However, we shall not consider this case any further in this example. Instead, we
shall assume that M4 operates in saturation and that M1 and M2 each carry half of the bias
current being sunk by Mb.

Example 7.4
We begin the node-fixing process by connecting a test voltage source to the output of the
circuit whose value we have adjusted to match the quiescent output voltage, which we have
just established is equal to the quiescent value of Vin, as shown in Fig. 29a. At this point,
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(a) (b)

Figure 29: Fixing the output voltage of the follower-connected differential amplifier.

the circuit exchanges no current with the test source, as shown in Fig. 29b. We can compute
the incremental output resistance of this circuit, as shown in Fig. 30a, by increasing Vout

by δVout and determining how much current flows into the circuit. In this case, because we
have connected the output back to the inverting input of the amplifier, if we change the
output voltage, the amplifier will draw in a relatively large amount of current, which would
be on the order of that which flowed out of the differential amplifier when we computed its
incremental transconductance gain in the last example. This current would be much larger
than that which flowed into the the amplifier due to the Early-effect resistors of M2 and M4

when we changed the output voltage in the last example. So, we should expect that the
Early-effect resistors of M2 and M4 will have a negligible impact on the calculation of the
incremental output resistance of the unity-gain follower. To illustrate this point, we shall
perform the calculation using source splitting and superposition both without and with these
Early-effect resistors.

(a) (b)

Figure 30: Calculation of the incremental output resistance of the follower-connected dif-
ferential amplifier with no applied input signal by voltage-source splitting and superposition.
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Figure 31: The only nonzero components of δIout occur when we apply δVout to the replica
source on branch 3.

Without the Early-effect resistors of M2 and M4, we have the situation depicted in
Fig. 30a. In this case, we split Vout into three replica sources, as shown in Fig. 30b. We shall
compute each of the components of δIout due to each of the replica test sources individually
and assemble them into the total δIout using superposition. The only nonzero components of
δIout occur when we change the value of the replica source on branch 3, as shown in Fig. 31.
By inspection of this circuit, we can write the total output current as

δIout =
gm2δVout

1 + gs2 (1/gs1)︸ ︷︷ ︸
δIout23

(1 + 1) = gmnδVout,

where we have once again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
Note that the first 1 in parentheses accounts for δIout23 and the second one accounts for
δIout13. In this case, we have that the incremental output resistance of the circuit is given
by

Rout =
δVout

δIout
=

1

gmn

.

With the Early-effect resistors of M2 and M4, we have the situation shown in Fig. 32a.
In this case, we split Vout into five replica sources, as shown in Fig. 32b. We shall again
compute each of the components of δIout due to each of the replica test sources individually
and assemble them into the total δIout using superposition. The only nonzero components
of δIout occur when we change the value of the replica sources on branch 1, branch 3, and
branch 5, as shown in Fig. 33a, Fig. 33b, and Fig. 33c, respectively. By inspection of these
circuits, we can write the total output current as

δIout =
δVout

ro4︸ ︷︷ ︸
δIout11

+
δVout

ro2 + (1/gs1‖1/gs2)︸ ︷︷ ︸
δIout33

(
1− gs2

gs1 + gs2︸ ︷︷ ︸
δIout43/δIout33

+

δIout23/δIout33︷ ︸︸ ︷
gs1

gs1 + gs2

)
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(a) (b)

Figure 32: Calculation of the incremental output resistance of the follower-connected dif-
ferential amplifier with no applied input signal by voltage source splitting including the
Early-effect resistors of M2 and M4.

+
gm2δVout

1 + gs2 (1/gs1‖ro2)︸ ︷︷ ︸
δIout45

(
1− 1/ro2

gs1 + 1/ro2︸ ︷︷ ︸
δIout35/δIout45

+
gs1

gs1 + 1/ro2︸ ︷︷ ︸
δIout25/δIout45

)

=
δVout

ro4
+

δVout

ro2 + (1/2gsn)

(
1− gsn

2gsn
+

gsn
2gsn

)
+

gmnδVout

1 + (gsn/gsn)
· 2gsnro2
gsnro2 + 1

≈ δVout

ro4
+

δVout

ro2
+ gmnδVout

≈ gmnδVout,

where we again have made use of the fact that incremental source conductances and transcon-
ductance gains of M1 and M2 are equal to one another under quiescent conditions, and the
approximations follow from the fact that gs2ro2 � 1. We have also assumed that gs2ro4 � 1,
which will be the case if the Early voltages of the pMOS transistors are not too different
from those of the nMOS transistors, because M2 and M4 both carry equal quiescent channel
currents. Thus, the incremental output resistance of the circuit is given approximately by

Rout =
δVout

δIout
≈ 1

gmn
,

which is precisely what we found with substantially less effort when we omitted ro2 and ro4.
Next, we must determine the incremental transconductance gain of the circuit from input

to output with the output voltage fixed, as shown in Fig. 34. As with the incremental output
resistance calculation, none of the Early-effect resistors will matter for this one either. We
increase the gate of M1 by δVin, as shown in Fig. 34. This increase in the gate voltage of M1

results in an increase in its channel current, δI1, given by

δI1 =
gm1δVin

1 + gs1 (1/gs2)
=

gmn

2
· δVin,

27



where we have again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
Now, this incremental current flowing into the drain of M1 also flows out of the gate/drain
of M3 and is reflected to the output by the pMOS current mirror, as shown in Fig. 34. It
also flows out of the source of M1 and into the the source of M2 and out of the circuit, as
shown. Thus, the incremental output current is given by

δIout = 2δI1 = gmnδVin,

so the incremental voltage gain of the unity-gain follower is given by

A =
δVout

δVin

= GmRout = gmn · 1

gmn

= 1.

For our final example, we shall use the node fixing technique to compute the incremental
differential-mode gain of the simplified folded-cascode differential amplifier, shown in Fig. 35.
For this calculation, we shall assume that all of the nMOS transistors are matched, that all
of the pMOS transistors are matched, and that Vcm is sufficiently far above ground that Mb

operates in saturation. Additionally, we shall assume that the cascode bias voltage, Vc, is set
low enough that M3 and M4 are saturated, but high enough that M1 and M2 are saturated
for all allowable values of Vcm. Transistor M7 is diode connected, and thus operates in
saturation. The question of whether or not M5 operates in saturation is again very similar
to the one that we addressed for M1 in the super source follower example.

By a similar line of reasoning to that which we followed for the simple five-transistor dif-
ferential amplifier, the quiescent output voltage of this circuit will be equal to the drain/gate
voltage of M7. When Vout = V7, the currents flowing in M7 and M8 will be identical as will
be the currents flowing in M5 and M6. Also, at this point, if M5 and M7 are both saturated
under these conditions, then so are M6 and M8. If M5 and M6 are both saturated and both
have the same drain and gate voltage, then their source voltages, V5 and V6 must also be
equal to one another. Under these conditions, M1 and M2 have the same gate, source, and
drain voltages, and must therefore be passing the same current. Likewise, M3 and M4 have
the same gate, source, and drain voltages, and so must also pass the same amount of current.
With the circuit in such a state, KCL is satisfied everywhere.

Example 7.5
We begin the node fixing process by connecting a test voltage source to the output of the
circuit whose value we have adjusted to match the quiescent output voltage of the amplifier,
which we have just established is equal to the value of V7, as shown in Fig. 36a. At this
point, the amplifier exchanges no current with the test source, as indicated in Fig. 35b. We
can compute the incremental output resistance of the amplifier, as shown in Fig. 37a, by
increasing Vout by δVout and determining how much current flows into the circuit as a result.
In doing so, we shall account for the Early effect of transistors M2, M4, M6, and M8, as
shown in Fig. 37a. Given that the name folded cascode contains the word cascode, we might
expect that the incremental resistance seen looking into the drain of M6 (i.e., the cascode
transistor connected to the output) would be much larger than that looking into the drain of
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M8, which is the output of a simple nMOS mirror, and hence ro8 would dominate the parallel
combination of the two. As we shall see, this does turn out to be the case. Nevertheless, we
shall proceed with the calculation to illustrate the techniques involved.

To compute δIout, we split Vout into four replica sources, as shown in Fig. 37b. We shall
compute each of the components of δIout due to each of the replica test sources individually
and assemble them into the total δIout by superposition. As shown in Fig. 38a and Fig. 38b,
the only nonzero components of δIout occur when we change the value of the replica source
on branches 1 and 4. The only component of the output current excited by the voltage
change on branch 1 flows into ro8, as shown in Fig. 38a. The voltage change on branch 4
causes current components to flow in branches 2, 3, and 4, as shown in Fig. 38b.

In order to compute how the current components divide at the source of M6, we need to
know the incremental resistance seen looking into the drain of M2 in parallel with its Early-
effect resistor, as shown in Fig. 39a. To determine the equivalent incremental resistance, Req,
indicated in Fig. 39a, we can recursively apply source splitting and superposition, by excising
the differential pair from the circuit. Then, we apply a test voltage source to the drain of M2

whose value is adjusted to match the quiescent drain voltage of M2 in the original circuit.
Finally, we compute the additional current that flows into the drain of M2 when we change
the test voltage source by a small amount. The only nonzero components of δI2 occur when
we change the replica source on branch 2, as shown in Fig. 39b. We can compute the change
in I2 as

δI2 =
δV

ro2 + (1/gs1‖1/gs2)︸ ︷︷ ︸
δI222

(
1− gs2

gs1 + gs2︸ ︷︷ ︸
δI212/δI222

)

=
δV

ro2 + (1/gs1‖1/gs2) ·
gs1

gs1 + gs2

=
δV

2ro2 + 1/gsn
,

if gs1 = gs2 = gsn. Thus, we have that the incremental resistance seen looking into the right
side of the differential pair is given by

Req =
δV

δI2
= 2ro2 + 1/gsn ≈ 2ro2.

With this result, we can write the total current flowing into the output of the amplifier
in response to a small change in Vout by inspection of the circuits shown in Fig. 38a and
Fig. 38b as

δIout =
δVout

ro8︸ ︷︷ ︸
δIout11

+
δVout

ro6 + (1/gs6‖ro4‖2ro2)︸ ︷︷ ︸
δIout44

(
1− gs6

gs6 + 1/ro4 + 1/2ro2︸ ︷︷ ︸
δIout34/δIout44

+
1/2ro2

gs6 + 1/ro4 + 1/2ro2︸ ︷︷ ︸
δIout24/δIout44

)
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=
δVout

ro8
+

δVout

ro6 + (1/gs6‖ro4‖2ro2) ·
1/ro4 + 1/ro2

gs6 + 1/ro4 + 1/2ro2

=
δVout

ro8
+

δVout

ro6 + (1/gs6‖ro4‖2ro2) ·
1

gs6 (ro2‖ro4) ·
1

1 + 1/gs6 (ro4‖2ro2)
≈ δVout

ro8
+

δVout

gs6ro6 (ro2‖ro4) ,

which means that the incremental output resistance of the folded-cascode amplifier is given
approximately by

Rout = ro8‖ (gs6ro6 (ro2‖ro4)) ≈ ro8.

Next, we must determine the incremental transconductance gain of the circuit from input
to output with the output voltage fixed, as shown in Fig. 40. Because the output voltage
source maintains the voltage across ro8 constant, the current flowing through it will not
change for this calculation, so it will have no impact on the calculation whatsoever. Because
the source conductances of M1 and M2 are much larger than 1/ro2, any current diverted
by ro2 from the sources of M1 and M2 would represent a negligible loss from that which
flows into the sources of M1 and/or M2, so we would expect it too to have a negligible
impact on this calculation. The same can be said for 1/ro4 and 1/ro6 in comparison to
gs6. Consequently, we shall omit all four Early-effect resistors in calculating the circuit’s
incremental transconductance gain, as shown in Fig. 40. Also, as indicated in Fig. 35b, we
shall apply a pure differential-mode input to the circuit for this calculation, which means
that we apply half of δVdm to the noninverting input and half of δVdm to the inverting input
so that the common-mode input voltage remains unchanged. To compute δIout, we shall
apply superposition, considering the effect of each half of δVdm separately and superposing
the resulting components of δIout, as shown in Fig. 40.

First, we consider increasing the gate of M1 by δVdm/2, as shown in Fig. 40a. This
increase in the gate voltage of M1 results in an increase in its channel current, δI1, given by

δI1 =
gm1δVdm/2

1 + gs1 (1/gs2)
=

gmn

4
· δVdm,

where we have again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
This increase in the current flowing through M1 results in an equal decrease in the current
flowing through M5, which we can think of as an incremental current flowing out of the
source of M5, as shown in Fig. 40a. In turn, this current flows from the input of the current
mirror and is reflected to the output through M8, as shown in Fig. 40a. The original increase
in I1 also flows back up through M2 and into the source of M6 (i.e., the decrease in I2 is
compensated by an equal increase in the current flowing through M6) and out of the circuit,
as shown in Fig. 40a. Thus, the first component of the incremental output current is given
by

δIout1 = 2δI1 =
gmn

2
· δVdm.

Next, we consider decreasing the gate of M2 by δVdm/2, as shown in Fig. 40b. This
decrease in the gate of M2 results in a decrease in its channel current, δI2, whose magnitude
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is given by

δI2 =
gm2δVdm/2

1 + gs2 (1/gs1)
=

gmn

4
· δVdm,

where we have once again made use of the fact that the incremental source conductances and
transconductance gains of M1 and M2 are equal to one another under quiescent conditions.
This decrease in the current flowing through M2 again can be thought of as a positive
incremental current flowing from source of M2 to its drain and out of the circuit through
M6, as shown in Fig. 40b. This incremental current must come from the source of M1. It
also flows through the channel of M1 and from the source of M5. It also flows through M5

and from the input of the nMOS mirror, which reflects it to the output of the circuit, as
shown in Fig. 40b. Thus, the second component of δIout is given by

δIout2 = 2δI2 =
gmn

2
· δVdm.

Superposing these two components of the output currents, we obtain the total incremental
output current as

δIout = δIout1 + δIout2 = gmnδVdm,

which implies that the incremental transconductance gain of the circuit with the output
voltage held fixed is given by

Gm =
δIout
δVdm

= gmn.

Therefore, the incremental differential-mode gain of the circuit is given approximately by

Adm =
δVout

δVdm

= GmRout ≈ gmnro8 = gmnron,

which is the intrinsic gain of each of the nMOS transistors in the circuit except for Mb, which
carries a different current from the rest.
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(a)

(b)

(c)

Figure 33: The only nonzero components of δIout occur when we apply δVout to the replica
sources on (a) branch 1, (b) branch 3, and (c) branch 5.
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Figure 34: Calculation of the incremental transconductance gain of the follower-connected
differential amplifier with the output voltage fixed.

(a) (b)

Figure 35: Folded-cascode differential amplifier.
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(a)

(b)

Figure 36: Fixing the output voltage of the folded-cascode differential amplifier.
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(a)

(b)

Figure 37: Calculation of the incremental output resistance of the folded-cascode differen-
tial amplifier with no applied input signal by voltage source splitting.
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(a)

(b)

Figure 38: The only nonzero components of δIout occur when we apply δVout to the replica
sources on (a) branch 1 and (b) branch 4.

(a) (b)

Figure 39: Auxiliary calculation of the incremental resistance seen looking into the drain
of M2 by voltage source splitting and superposition.
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(a)

(b)

Figure 40: Calculation of the incremental transconductance gain of the folded-cascode
differential amplifier with the output voltage fixed by superposition.
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