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5 Differential Pair

In this section, we shall consider the circuit shown in Fig. 1, which is called the differential
pair.1 This venerable circuit configuration has a long history—it can be traced back to
Fig. 3 of British Patent Specification 482,740 filed by A. D. Blumlein on July 4, 1936, where
it appears implemented using vacuum tubes. Since its inception in the vacuum-tube era,
this configuration has been used as the input stage of most of the operational amplifiers
and comparators that have been designed. As we shall see, it is very sensitive to changes in
the difference between its input voltages, V1 and V2, while being insensitive to their absolute
levels.

Consider the circuit shown in Fig. 1. At any level of bias current, Ib, Kirchhoff’s Current
Law (KCL) applied at the common-source node, V , implies that, in the steady state,

Ib = I1 + I2. (1)

That turns out to be the secret of the differential pair’s success. We are able to keep the
incremental properties (e.g., the incremental transconductance gains) of M1 and M2 in this
circuit nearly constant, despite large changes in the input voltages, by keeping the sum of
the two output currents, I1 + I2, fixed at a constant value given by the bias current, Ib. We
arrange this constraint by allowing the voltage on the common-source node, V , to move up
and down with the input voltages, V1 and V2, in such a way that I1 + I2 = Ib. Suppose that
we increase V1 relative to V2; then, I1 would increase, causing the sum I1 + I2 to increase
transiently. The amount by which this sum exceeds Ib charges up node V , reducing both
I1 and I2 until the sum is just equal to Ib. Conversely, if we were to decrease V1 relative to
V2, then I1 would decrease, causing a deficit in the sum I1 + I2. The amount by which Ib
exceeds this sum would discharge node V , increasing both I1 and I2 until the sum is again
equal to Ib. Similar conditions hold for increases and decreases in V2.

5.1 Weak-Inversion Operation

We shall now analyze the nMOSdifferential pair characteristics under the assumption of
weak-inversion operation. As we have seen, each of the differential pair’s output currents is
bounded above by the bias current. Consequently, if M1 and M2 remain in saturation and
the bias current is a weak-inversion current, then M1 and M2 must also operate in weak
inversion. Consequently, we have that the output currents are given by

I1 = SIse
(κ(V1−VT0)−V )/UT (2)

and
I2 = SIse

(κ(V2−VT0)−V )/UT . (3)

1This circuit is sometimes also referred to as the source-coupled pair or as the long-tailed pair.
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Figure 1: An nMOSdifferential pair circuit.

Now, we can substitute Eq. 2 and Eq. 3 into Eq. 1 to find that

Ib = SIse
(κ(V1−VT0)−V )/UT + SIse

(κ(V2−VT0)−V )/UT

= SIse
−(κVT0+V )/UT

(
eκV1/UT + eκV2/UT

)
,

which upon rearrangement becomes

SIse
−(κVT0+V )/UT =

Ib
eκV1/UT + eκV2/UT

. (4)

By substituting Eq. 4 into Eq. 2 and into Eq. 3, we have that, in weak inversion, the
output currents are given by

I1 = Ib ·
eκV1/UT

eκV1/UT + eκV2/UT
=

Ib
1 + e−κ(V1−V2)/UT

(5)

and

I2 = Ib ·
eκV2/UT

eκV1/UT + eκV2/UT
=

Ib
1 + eκ(V1−V2)/UT

, (6)

respectively. Using these equations, we can obtain an expression for the differential output
current, I1 − I2, which is often that which we care most about. By subtracting Eq. 6 from
Eq. 5, we have that

I1 − I2 = Ib ·
eκV1/UT

eκV1/UT + eκV2/UT
− Ib ·

eκV2/UT

eκV1/UT + eκV2/UT

= Ib ·
eκV1/UT − eκV2/UT

eκV1/UT + eκV2/UT
. (7)

At this point, we shall find it useful to express the differential output current in terms of
the common-mode input voltage, Vcm, and the differential-mode input voltage, Vdm, which
are given by

Vcm = 1
2

(V1 + V2) and Vdm = V1 − V2, (8)

respectively. By solving these equations simultaneously for the original input voltages, we
can express V1 and V2 in terms of Vcm and Vdm as

V1 = Vcm + 1
2
Vdm and V2 = Vcm − 1

2
Vcm, (9)
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respectively. By substituting Eq. 9 into Eq. 7, we have that

I1 − I2 = Ib ·
eκVcm/UTeκVdm/2UT − eκVcm/UTe−κVdm/2UT

eκVcm/UTeκVdm/2UT + eκVcm/UTe−κVdm/2UT

= Ib ·
eκVcm/UT

eκVcm/UT
· e

κVdm/2UT − e−κVdm/2UT

eκVdm/2UT + e−κVdm/2UT

= Ib ·
eκVdm/2UT − e−κVdm/2UT

eκVdm/2UT + e−κVdm/2UT

= Ib tanh
κVdm
2UT

. (10)

Finally, we shall develop an explicit expression for the common-source node voltage, V .
If Mb operates in weak inversion and is saturated, we have that

Ib = SIse
κ(Vb−VT0)/UT .

By dividing this equation by Eq. 4, we find that

eκVb/UTeV/UT = eκV1/UT + eκV2/UT ,

which we can solve for the common-source node voltage to find that

V = UT log
(
eκV1/UT + eκV2/UT

)
− κVb.

If V1 exceeds V2 by only a few UT, then the first term in parentheses quickly renders the
second negligible in comparison, and we have that

V ≈ UT log eκV1/UT − κVb = κ (V1 − Vb) .

On the other hand, if V2 exceeds V1 by only a few UT, the second term in parentheses renders
the first negligible in comparison, and we have that

V ≈ UT log eκV2/UT − κVb = κ (V2 − Vb) .

By combining these results, we have that the common-source node voltage is given by

V = UT log
(
eκV1/UT + eκV2/UT

)
− κVb (11)

≈ κ (max(V1, V2)− Vb) .

It is relatively easy to see that the approximation is a lower-bound on V and that the
maximum error occurs when V1 = V2 and is equal to UT log 2, which is quite small.

5.2 Strong-Inversion Operation

Now, we shall analyze the behavior of the differential pair assuming that all three transistors
are saturated and operate in strong inversion. Unfortunately, the bias transistor’s operating
in strong inversion does not guarantee that M1 and M2 also operate in strong inversion—as
the bias current is steered to one side, it steals current from the other, eventually resulting
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in the loosing side entering moderate and eventually weak inversion. Consequently, we shall
need to examine the domain of validity our results.

If M1 and M2 both operate in strong inversion and in saturation, then we have that I1
is given by

I1 =
SIs
4U2

T

(κ (V1 − VT0)− V )2 , (12)

and that I2 is given by

I2 =
SIs
4U2

T

(κ (V2 − VT0)− V )2 . (13)

Similarly, if Mb also operates in strong inversion and in saturation, then we have that Ib is
given by

Ib =
SIs
4U2

T

(κ (Vb − VT0))
2 . (14)

By substituting Eq. 12, Eq. 13, and Eq. 14 into Eq. 1 and dividing both sides by the
common factor of SIs/4U

2
T, we find that

κ2 (Vb − VT0)
2 = (κ (V1 − VT0)− V )2 + (κ (V2 − VT0)− V )2 .

By expanding this equation and collecting powers of V , we obtain a quadratic equation for
V , which is given by

0 = 2︸︷︷︸
a

V 2 − 2κ (V1 + V2 − 2VT0)︸ ︷︷ ︸
b

V + κ2
(
(V1 − VT0)

2 + (V2 − VT0)
2 − (Vb − VT0)

2) .︸ ︷︷ ︸
c

(15)

Before we apply the quadratic formula indiscriminately to solve Eq. 15, we shall work to
simplify its discriminant; doing so, we obtain

b2 − 4ac = 4κ2 (V1 + V2 − 2VT0)
2 − 8κ2

(
(V1 − VT0)

2 + (V2 − VT0)
2 − (Vb − VT0)

2
)

= 4κ2
(
2 (Vb − VT0)

2 − (V1 − V2)2
)
.

By applying the quadratic formula to Eq. 15 and making use of this result, we have that
the possible solutions for V are given by

V =
κ

2

(
V1 + V2 − 2VT0 ±

√
2 (Vb − VT0)

2 − (V1 − V2)2
)
. (16)

Which one of these roots should we pick? In order for M1 to operate in strong inversion, we
must have that

κ (V1 − VT0)− V > 0 =⇒ V < κ (V1 − VT0) .

Similarly, in order for M2 to operate in strong inversion, we must have that

κ (V2 − VT0)− V > 0 =⇒ V < κ (V2 − VT0) .

By adding these two inequalities and dividing both sides by 2, we find that in order for both
M1 and M2 to operate in strong inversion, we require of V that

V <
κ

2
(V1 + V2 − 2VT0) ,
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which implies that we must choose the root with the negative sign in Eq. 16.
By substituting Eq. 15 into Eq. 12, we obtain an expression for I1, which is given by

I1 =
SIs
4U2

T

(
κ (V1 − VT0)−

κ

2

(
V1 + V2 − 2VT0 −

√
2 (Vb − VT0)

2 − (V1 − V2)2
))2

=
SIs
4U2

T

· κ
2

4

(
(V1 − V2) +

√
2 (Vb − VT0)

2 − (V1 − V2)2
)2

=
SIs
4U2

T

· κ
2

4

(
2 (V1 − V2)

√
2 (Vb − VT0)

2 − (V1 − V2)2 + 2 (Vb − VT0)
2

)

=
1

2
· SIs

4U2
T

(κ (Vb − VT0))
2

1 +
V1 − V2
Vb − VT0

√
2−

(
V1 − V2
Vb − VT0

)2


=
Ib
2

1 +
V1 − V2
Vb − VT0

√
2−

(
V1 − V2
Vb − VT0

)2
 . (17)

Similarly, by substituting Eq. 15 into Eq. 13, we obtain an expression for I2, which is given
by

I2 =
Ib
2

1− V1 − V2
Vb − VT0

√
2−

(
V1 − V2
Vb − VT0

)2
 . (18)

Finally, by subtracting Eq. 18 from Eq. 17, we can find an expression for the differential
output current, I1 − I2, given by

I1 − I2 = Ib ·
V1 − V2
Vb − VT0

√
2−

(
V1 − V2
Vb − VT0

)2

. (19)

What does this formidable expression mean (other than large-signal analysis for strong-
inversion CMOS circuits is not for the faint of heart)? We’ll leave that for you to ponder...
Good luck!
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