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4 MOS Transistor Models

In this section, we shall develop large-signal models for an nMOS transistor in all of its
various operating regimes. Because the MOS transistor is a four-terminal device, the current
depends on three potential differences, which are typically taken to be VGS, VDS, and VBS.
Here, the gate, drain, and bulk (i.e., substrate) voltages are all referenced to that of the
source. Although this convention is ubiquitous, it is not the only possible convention. For
example, we can instead reference the gate, source, and drain potentials instead to the bulk
potential. In this case, the model would be expressed in terms of VGB, VSB, and VDB [1].
With this convention, the channel current of an MOS transistor can be expressed as

I = Is (f(VGB, VSB)− f(VGB, VDB)) , (1)

where Is is related to the channel current of the transistor at threshold and f(·) is a function
that assumes an exponential form below threshold and a quadratic form above threshold.
Such MOS models are called bulk-referenced for obvious reasons or source/drain-symmetric
because the source and drain voltages come into the model in a symmetric fashion. With
the proper choice of f(·), this single equation describes the channel current in all regions of
operation, transitioning smoothly from weak inversion to strong inversion and from the ohmic
region to the saturation region. For an nMOS transistor fabricated in an n-well technology,
as shown in Fig. 1, the p-type bulk is connected to ground, so the three potentials in the
model would simply be VG, VD, and VS.

Our intent in developing these models will not be physical rigor. Instead, our concern is
to develop simple large-signal models that are useful from a circuit-design point of view, as
opposed to a device-physics one. We will define some notions associated with MOS transistor
operation, such as threshold and the onset of saturation in slightly unconventional ways so
that we can develop the models with a minimum of physical detail and so that the concepts
can be applied consistently in all operating regions. In our discussion, we will make several
simplifying assumptions. First, we shall be assuming a long-channel device. Second, we shall
assume that the device behavior is entirely uniform along the direction of its width (i.e., in
the y direction) and that the mobile charge is located at the surface of the device, so that
we can consider current flow in one spatial dimension, along the length of the channel (i.e.,
in the x direction). Third, we shall assume that there is no charge trapped in surface states.
Fourth, we shall neglect contact potentials that exist between different materials.

4.1 Channel Capacitance

We shall take the conduction band edge deep in the silicon substrate to be the zero of
potential. When the gate voltage is equal to the flatband potential, Vfb, then the conduction
and valence bands are flat from deep within the silicon substrate all the way to the surface
and there is no depletion region beneath the gate. Likewise, the bands are flat within the
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Figure 1: Simplified structure of an nMOS transistor.

oxide. If we apply a voltage to the gate that is more positive than Vfb, then the difference
between the applied gate voltage and Vfb is partially dropped across the oxide and partially
across a depletion region that forms beneath the gate, such that

VG − Vfb = ψs + ψox, (2)

where ψs is the potential drop across the depletion region beneath the gate and ψox is the
potential drop in the oxide.

If there is no charge within the oxide, then Gauss’ law implies that the electric field
within the oxide, Eox, is constant and is given by

Eox = −ψox

tox
, (3)

where tox is the thickness of the oxide layer. Integrating the charge density in the depletion
layer and the inversion layer from deep within the silicon to the surface, we find the electric
field at the surface of the silicon, Esi, to be

Esi = Qdep +Qm

εsi
, (4)

where Qdep is the charge per unit area in the depletion layer beneath the gate, Qm is the
mobile charge per unit area in the channel, and εsi is the dielectric constant of silicon. The
displacement vector (i.e., the product of the dielectric constant and electric field) is conserved
across the silicon/oxide interface, which implies that

εsiEsi = εoxEox.
Substituting Eqs. 3 and 4 into this equation and solving for ψox, we find that

ψox = − tox
εox

(Qdep +Qm) = −Qdep +Qm

Cox
, (5)
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where Cox ≡ εox/tox is the capacitance per unit area of the oxide. Substituting this equation
into Eq. 2, we find that

VG − Vfb = ψs − Qdep +Qm

Cox
. (6)

Differentiating this equation with respect to distance along the channel, we find that

0 =
∂ψs

∂x
− 1

Cox
· ∂Qdep

∂ψs
· ∂ψs

∂x
− 1

Cox
· ∂Qm

∂x

=
∂ψs

∂x
+
Cdep

Cox

· ∂ψs

∂x
− 1

Cox

· ∂Qm

∂x
,

where Cdep ≡ −∂Qdep/∂ψs is the incremental capacitance per unit area of the depletion layer
beneath the gate. By rearranging this equation, we find that

∂Qm

∂x
= (Cox + Cdep)

∂ψs

∂x
= C

∂ψs

∂x
, (7)

where C ≡ Cox + Cdep = ∂Qm/∂ψs is the incremental capacitance per unit area of the
channel.

4.2 Channel Current

The channel current in an MOS transistor flows both by drift and by diffusion. In some
operating regimes, the current flows primarily by drift, in others it flows primarily by dif-
fusion. However, in many cases of interest, both current components are of roughly equal
magnitudes. The predominant carrier transport mechanism can also change as a function
of position along the channel in some regions of operation. Thus, to model the channel cur-
rent in all regimes, we need to include both a drift and a diffusion term in the current-flow
equation. Thus, we write the channel current, I, as a function of position along the channel,
as

I(x) = Idrift(x) + Idiff(x) . (8)

The drift component of I is given by

Idrift(x) = (WQm)µEx = −WµQm
∂ψs

∂x
, (9)

whereW is the width of the MOS transistor (note thatWQm gives the mobile charge density
per unit length along the channel), µ is the effective low-field mobility of electrons in the
channel, and Ex is the component of the electric field in the x direction (i.e., parallel to the
channel). The diffusion component of I is given by

Idiff(x) = D
∂

∂x
(WQm) =WµUT

∂Qm

∂x
, (10)

where D is the diffusion constant of electrons in the channel, and UT is the thermal voltage,
kT/q. Thus, we can rewrite Eq. 8 using Eqs. 9 and 10 as

I(x) = −WµQm
∂ψs

∂x
+WµUT

∂Qm

∂x

= Wµ

(
−Qm

∂ψs

∂x
+ UT

∂Qm

∂x

)
. (11)
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To obtain an expression for the channel current that is independent of position along the
channel, we integrate both sides of Eq. 11 from source to drain. Doing so, we write

∫ L

0
I(x) dx = Wµ

∫ L

0

(
−Qm

∂ψs

∂x
+ UT

∂Qm

∂x

)
dx.

Now, conservation of charge implies that the total channel current must be constant along
the channel, so the left-hand side of this equation becomes∫ L

0
I(x) dx = I

∫ L

0
dx = IL.

Thus, we can write the channel current as

I =
W

L
µ
∫ L

0

(
−Qm

∂ψs

∂x
+ UT

∂Qm

∂x

)
dx

= Sµ
∫ L

0

(
−Qm

∂ψs

∂Qm

· ∂Qm

∂x
+ UT

∂Qm

∂x

)
dx

= Sµ
∫ L

0

(
−Qm

C
+ UT

)
∂Qm

∂x
dx

= Sµ
∫ QD

QS

(
−Qm

C
+ UT

)
dQm

= Sµ
∫ QD

QS

(
−Qm

C
+ UT

)
dQm + Sµ

∫ 0

QD

(
−Qm

C
+ UT

)
dQm

−Sµ
∫ 0

QD

(
−Qm

C
+ UT

)
dQm

= Sµ
∫ 0

QS

(
−Qm

C
+ UT

)
dQm︸ ︷︷ ︸

IF

−Sµ
∫ 0

QD

(
−Qm

C
+ UT

)
dQm︸ ︷︷ ︸

IR

, (12)

where S ≡W/L is the strength ratio of the transistor, QS is the mobile charge per unit area
at the source end of the channel and QD is the mobile charge per unit area at the drain end
of the channel. Note that we have made use of Eq. 7 in going from the second step to the
third step in the above derivation.

We have expressed the channel current as the difference between a forward current com-
ponent, IF, and a reverse current component, IR, which have identical functional forms,
except that IF depends on QS and IR depends on QD. The mobile charge density at the
source end of the channel, in turn, will depend on the gate-to-bulk voltage and the source-
to-bulk voltage and not on the drain-to-bulk voltage. In the same way, the mobile charge
density at the drain end of the channel should depend on the gate-to-bulk potential and on
the drain-to-bulk potential and not on the source-to-bulk potential. Moreover, we should
expect that QS depends on VSB in precisely the same way that QD depends on VDB. Note
that this MOS transistor model has the source/drain symmetric form expressed in Eq. 1.
In such models, the primary channel current dependence on the drain voltage is contained
wholly within IR. If the forward current component is much larger than the reverse current
component, then the channel current no longer depends significantly on the drain voltage,
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and the transistor is saturated. The saturation current is simply given by IF. On the other
hand, if the magnitudes of IF and IR are comparable, then the channel current depends
strongly both on the source voltage and on the drain voltage. In this case, the transistor is
in the ohmic region.

To make progress on the MOS transistor model beyond Eq. 12, we introduce an approx-
imation, which was made initially by Maher and Mead [2, 3], that will allow us to evaluate
the integrals in Eq. 12 in closed form. The channel capacitance per unit area, C, defined in
Eq. 7, is a weak function of position along the length of the channel—in moderate and strong
inversion, the depletion layer gets thicker closer to the drain end of the channel, making Cdep

and, hence, C smaller nearer to the drain. We shall take C to be constant as a function of
x, with Cdep replaced by an average value. With this approximation, we have that

I = Sµ


−Q2

m

2C

∣∣∣∣∣
0

QS

+ UTQm

∣∣∣∣∣
0

QS


− Sµ


−Q2

m

2C

∣∣∣∣∣
0

QD

+ UTQm

∣∣∣∣∣
0

QD




= Sµ

(
Q2

S

2C
− UTQS

)
− Sµ

(
Q2

D

2C
− UTQD

)

=
Sµ

2C

(
Q2

S − 2CUTQS

)
︸ ︷︷ ︸

IF

− Sµ

2C

(
Q2

D − 2CUTQD

)
︸ ︷︷ ︸

IR

. (13)

Note that the quadratic terms in IF and IR in Eq. 13 originated with the drift component of
the channel current, whereas the linear terms stemmed from the diffusion component. When
|QS| � 2CUT, the diffusion term in IF is dominant over the drift term. Conversely, when
|QS| � 2CUT, then the drift term is much larger than the diffusion term. When |QS| is equal
to 2CUT, then these two current components are equal. This condition on the mobile charge
density corresponds to the usual notion of threshold. Below threshold, the mobile charge
density in the channel is small and the channel current is carried primarily by diffusion. In
strong inversion, the mobile charge density is large, the channel current is carried mainly
by drift. At threshold, the channel current flows both by drift and by diffusion. All of the
same statements can also be made for |QD| and IR. Thus, we shall take the magnitude of
the mobile charge density at threshold to be given by 2CUT.

Equation 13 represents a simple, closed-form expression for the channel current flowing
in an nMOS transistor in terms of the mobile charge densities at the source and drain ends of
the channel. This model equation is valid in all regions of normal MOS transistor operation,
transistioning continuously from weak inversion to above threshold and from the ohmic
region to the saturation region. Unfortunately, we would like to have the channel current
explicitly in terms of the terminal voltages, VG, VS, and VD. The dependence of the channel
current on the terminal voltages come in through the dependence of QS on VG and VS and the
dependence of QD on VG and VD. Unfortunately, no physically exact, closed-form expressions
derived from first principles exist for these dependencies. In the next two sections, we shall
explore two extreme limits of this model where simple approximate relationships between
the mobile charge densities and the terminal voltages exist.
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4.3 Weak-Inversion Operation

In the weak-inversion region of operation, the amount of mobile charge in the channel is
negligible compared to the amount of charge exposed in the depletion layer beneath the
gate. Thus, we should expect that the presence of the mobile charge will have a minuscule
effect on the electrostatics in the channel region. If the electrostatics are only determined
by the substrate potential, the gate potential, the gate charge, and the depletion charge,
then, because the gate and the substrate are both isopotential, we would expect that the
surface potential, ψs, should also be constant along the channel. Because the electric field
is given by the gradient of the potential, a constant surface potential implies that there is
no electric field in the direction of the channel. The absence of an electric field along the
channel, in turn, implies that any current flow must be by diffusion rather than by drift,
which is consistent with our conclusions at the end of Section 4.2 stemming from Eq. 13.
Therefore, to obtain a weak-inversion model for MOS transistor operation, we should be able
to neglect the quadratic terms in this equation, but we must still relate the mobile charge
densities at the source and drain ends of the channel to the applied terminal voltages.

We know that, in weak inversion, there must be a relatively substantial energy barrier
between the source and drain regions and the channel, otherwise there would be a substantial
number of charges in the channel. The number of carriers in the source that have sufficient
energy to surmount the energy barrier at the source end of the channel will follow the
Boltzmann distribution, being exponential in the height of the energy barrier, which, in
turn, is given by the difference between the source potential, VS, and the surface potential,
ψs. Likewise, the number of carriers in the drain that have sufficient energy to surmount the
energy barrier at the drain end of the channel will be exponential in the difference between
the VD and ψs. Thus, we expect that

QS ∝ e(ψs−VS)/UT and QD ∝ e(ψs−VD)/UT .

Unfortunately, we need to have these charge densities in terms of the applied gate voltage
and we will need to know what the constant of proportionally to use.

Toward this end, we shall again make use of Eq. 6 to determine how incremental changes
in the gate voltage affect the surface potential. By neglecting the mobile charge term and
differentiating with respect to ψs, we find that

∂VG
∂ψs

= 1− 1

Cox
· ∂Qdep

∂ψs

= 1 +
Cdep

Cox

=
Cox + Cdep

Cox
,

which implies that, in weak inversion, the incremental voltage gain from the gate to the
surface is given by

κ ≡ ∂ψs

∂VG
=

Cox

Cox + Cdep
. (14)

In this regime, the situation can be thought of intuitively as a capacitive voltage divider be-
tween the oxide capacitance above the channel and the effective capacitance of the depletion
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layer beneath the channel—this parameter is simply the capacitive divider ratio. Because
the thickness of the depletion layer beneath the channel increases with increasing gate volt-
age, Cdep will get smaller for larger values of VG, which implies that κ will increase with
increasing VG. However, κ is only a slowly-varying function of VG, and even for moderate
changes in VG, it is reasonable to assume that the value of κ is constant with a value between
0.5 and 0.9.

For relatively small changes about some operating point, we can expand ψs in a Taylor
series and truncate after the linear term. In order to also get the constant of proportionality
in the mobile charge densities, we shall choose to expand the surface potential around the
point VG = VT0, the zero-bias threshold voltage. When the gate voltage is equal to VT0 with
the source and drain grounded, QS and QD should both be equal to −2CUT. Thus, we
have that the mobile charge densities at the source and drain end of the channel are given
approximately by

QS ≈ −2CUTe
(κ(VG−VT0)−VS)/UT and QD ≈ −2CUTe

(κ(VG−VT0)−VD)/UT . (15)

Retaining only the terms in Eq. 13 that stem from diffusion and substituting the mobile
charge densities given in Eq. 15, we find that the channel current in an nMOS transistor
operating in weak inversion is given by

I = SµUT (−QS)− SµUT (−QD)

= 2SµCU2
Te

(κ(VG−VT0)−VS)/UT − 2SµCU2
Te

(κ(VG−VT0)−VD)/UT

= 2SµCU2
Te

κ(VG−VT0)/UT

(
e−VS/UT − e−VD/UT

)
=

2SµCoxU
2
T

κ
eκ(VG−VT0)/UT

(
e−VS/UT − e−VD/UT

)
= Ise

κ(VG−VT0)/UT

(
e−VS/UT − e−VD/UT

)
, (16)

where we have used Eq. 14 to express C as Cox/κ and we have introduced

Is ≡ 2SµCoxU
2
T

κ
,

which corresponds to approximately twice the threshold current of the transistor.
Equation 16 represents a complete model for the operation of an nMOS transistor in

weak inversion, covering both the ohmic region and the saturation region. To see that it
does, we can rearrange Eq. 16 to obtain

I = Ise
(κ(VG−VT0)−VS)/UT

(
1− e−VDS/UT

)
= Isat

(
1− e−VDS/UT

)
≈ Isat

when VDS is larger than about 4UT or 5UT. Thus, the channel current saturates, becoming
independent of VDS for VDS ≥ 5UT. For small VDS, to see that the model predicts ohmic
behavior, we can expand the e−VDS/UT term in this equation in a Taylor series around VDS = 0,
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Figure 2: Typical weak-inversion drain characteristic.

retaining only the linear term. Doing so, we find that

I = Isat
(
1− e−VDS/UT

)
= Isat

(
1−

(
1− VDS

UT
+

1

2

(
VDS

UT

)2

− · · ·
))

≈ Isat

(
1− 1 +

VDS

UT

)

=
Isat
UT

· VDS

= gdsVDS,

where gds ≡ Isat/UT represents the incremental conductance of the channel deep in the ohmic
region. These behaviors are both evident in a typical weak-inversion drain characteristic, as
shown in Fig. 2.

The weak-inversion model given in Eq. 16 is formally identical to the ones presented by
Mead [4], Vittoz [5], and Bult [6].

4.4 Strong-Inversion Operation

In strong inversion, the mobile charge density in the channel exceeds the charge density in
the depletion layer, and the channel charge has a large effect on the surface potential along
the channel. As discussed at the end of Section 4.2, for the levels of mobile charge density
that occur in strong inversion, the current flow is predominantly by drift. Consequently,
in developing a strong-inversion model for the MOS transistor, we shall only retain the
quadratic terms in Eq. 13. In this regime, the energy barriers at the source and drain ends
of the channel have been reduced to such an extent that nearly every additional charge that
we place on the gate is balanced by additional mobile charges in the channel rather than by
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uncovering more charge in the depletion layer beneath the channel. Moreover, the inversion
layer basically serves as the bottom plate of a parallel plate capacitor between the gate and
the channel whose capacitance per unit area is just Cox.

To obtain expressions for the mobile charge densities at the source and drain end of the
channel, we shall assume that all of the gate charges that go into raising the gate voltage
up to the threshold voltage are balanced by fixed charges in the depletion layer beneath
the channel and that all of the gate charges that go into raising the gate voltage above the
threshold voltage are balanced by additional mobile charges in the channel. Thus, we have
that the mobile charge densities in strong inversion are given by

QS = −Cox (VG − VT(VS)) and QD = −Cox (VG − VT(VD)) , (17)

where VT(VS) and VT(VD) are the (bulk-referenced) threshold voltages at the source and drain
ends of the channel, respectively. The threshold voltage at the source end of the channel
represents the gate voltage that we need to apply given the source voltage in order for the
mobile charge density at the source end of the channel to just equal −2CUT. We can obtain
a simple approximate expression for VT(VS) using the weak-inversion expression for QS given
in Eq. 15 by determining the value of VG that makes QS equal to −2CUT. Doing so, we find
that

VT(VS) = VT0 +
VS
κ
. (18)

Note that we are here taking into account the threshold-voltage increase normally associated
with the body effect using a simple linear approximation, similar to the one introduced by
Wallinga and Bult [7]. Thus, the strong-inversion model that we are developing accounts di-
rectly for the body effect (to first order) via the κ parameter without any auxiliary equations
and without adding too much complexity to the model. Similarly, the threshold voltage at
the drain end of the channel is the gate voltage that we need to apply given the drain voltage
so that the QD is just equal to −2CUT. Using the same approach as we just took for VT(VS),
we find that

VT(VD) = VT0 +
VD
κ
. (19)

Retaining only the terms in Eq. 13 that stem from drift and substituting the mobile
charge densities and threshold voltages given in Eqs. 17, 18, and 19, we find that the channel
current in an nMOS transistor operating in strong inversion is given by

I =
Sµ

2C
Q2

S −
Sµ

2C
Q2

D

=
Sµ

2C

((
−Cox

(
VG − VT0 − VS

κ

))2

−
(
−Cox

(
VG − VT0 − VD

κ

))2
)

=
Sµ

2C
· C

2
ox

κ2

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VD)
2
)

=
SµCox

2κ

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VD)
2
)
. (20)

Unfortunately, Eq. 20 only captures the behavior of the MOS transistor in the ohmic region
in strong inversion. To see that it does, we rearrange Eq. 20 slightly to obtain

I =
SµCox

2κ

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VS + VS − VD)
2
)
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Figure 3: Typical strong-inversion drain characteristic.

=
SµCox

2κ

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VS − VDS)
2
)

=
SµCox

2κ
(κ (VG − VT0)− VS)

2


1−

(
1− VDS

κ (VG − VT0)− VS

)2



=
SµCox

2κ
V 2
DSsat

(
1−

(
1− VDS

VDSsat

)2
)

= Isat

(
1−

(
1− VDS

VDSsat

)2
)
, (21)

where VDSsat ≡ κ (VG − VT0)− VS and

Isat ≡ SµCox

2κ
V 2
DSsat.

Figure 3 shows a typical strong-inversion drain characteristic along with a plot of Eq. 21.
The two curves agree for VDS ≤ VDSsat, but the model equation turns around while the drain
characteristic saturates for VDS > VDSsat. This deviation occurs because at VDS = VDSsat, the
value of QD given in Eq. 17 is equal to zero and for VDS > VDSsat, it would become positive,
which does not happen physically in this region of operation because the mobile charges in
the channel are electrons. Rather, what actually happens is that the drain end of the channel
goes into weak inversion and QD transitions smoothly over to the exponential form given in
Eq. 15. Understanding that the second term in Eq. 20 comes from QD makes it clear how
the transistor transitions from the ohmic region to the saturation region in strong inversion.
In saturation, the first term in Eq. 20 is much larger than the second one, so we can neglect
the second one and the current is described by the first one by itself. This point is almost
completely obscured by conventional source-referenced models of the strong-inversion MOS
transistor. The model given in Eq. 20 is formally identical to the one given by Wallinga and
Bult [7] and by Vittoz [5].
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(a) (b)

(c) (d)

(e) (f)

Figure 4: MOS-transistor current–voltage characteristics plotted on various scales.
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4.5 A Complete Set of Characteristics

Figure 4 shows a complete set of MOS-transistor current–voltage characteristics plotted on
various scales to highlight the different regions of operation. The three plots on the left in
Fig. 4 show a family of drain characteristics for saturation currents equally spaced on a log
scale ranging from weak inversion through moderate inversion to strong inversion. These
plots also show the onset of saturation (i.e., VDSsat) as a dashed line. Note that, in weak
inversion, the saturation voltage is independent of the current level, but begins to increase
with increasing current level as the transistor enters strong inversion. The three plots on the
right show channel current in saturation as a function of gate voltage. The points indicated
with plus point markers show the set of gate voltages and saturation currents that correspond
to the drain characteristics in the plots on the left.

4.6 The EKV Model

The Enz-Krummenacher-Vittoz (EKV) model [5,8] of the MOS transistor provides a simple
approximate closed-form expression for the channel current of a MOS transistor in terms
of the terminal voltages, each of which is referenced to the transistor’s bulk voltage. It is
valid in all regions of normal MOS transistor operation (i.e., when the drain-bulk and the
source-bulk junctions are reversed biased), transitioning between them continuously. In its
simplest form, the EKV model expresses the channel current in an nMOS transistor as

I = Is log
2
(
1 + e(κ(VG−VT0)−VS)/2UT

)
︸ ︷︷ ︸

IF

− Is log
2
(
1 + e(κ(VG−VT0)−VD)/2UT

)
︸ ︷︷ ︸

IR

, (22)

where all of the terms have their previously defined meanings.
The function log2

(
1 + ex/2

)
interpolates smoothly between an exponential (i.e., weak-

inversion behavior) when x < 0 and a quadratic (i.e., strong-inversion behavior) when x > 0.
To see that it does, first we suppose that x < 0. Then, it follows that ex/2 � 1 and we
have that log

(
1 + ex/2

)
≈ ex/2, because log (1 + y) ≈ y for small |y| � 1. Finally, because(

ex/2
)2

= ex, we have that log2
(
1 + ex/2

)
≈ ex for x < 0. Conversely, suppose that x > 0.

Then, it follows that ex/2 � 1 and 1 + ex/2 ≈ ex/2. Finally, because log ex/2 = x/2, we have

that log2
(
1 + ex/2

)
≈ (x/2)2 for x > 0.

Consequently, if both VG < VT0 + VS/κ and VG < VT0 + VD/κ, then Eq. 22 becomes

I = Is
(
log2

(
1 + e(κ(VG−VT0)−VS)/2UT

)
− log2

(
1 + e(κ(VG−VT0)−VD)/2UT

))
≈ Is

(
e(κ(VG−VT0)−VS)/UT − e(κ(VG−VT0)−VD)/UT

)
= Ise

κ(VG−VT0)/UT

(
e−VS/UT − e−VD/UT

)
,

and we recover the weak-inversion model given in Eq. 16. Conversely, if both VG > VT0+VS/κ
and VG > VT0 + VD/κ, then Eq. 22 becomes

I = Is
(
log2

(
1 + e(κ(VG−VT0)−VS)/2UT

)
− log2

(
1 + e(κ(VG−VT0)−VD)/2UT

))
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≈ Is


(κ (VG − VT0)− VS

2UT

)2

−
(
κ (VG − VT0)− VD

2UT

)2



=
Is
4U2

T

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VD)
2
)

=
SµCox

2κ

(
(κ (VG − VT0)− VS)

2 − (κ (VG − VT0)− VD)
2
)
,

and we recover the strong-inversion model given in Eq. 20. Note that, if VG > VT0 + VS/κ
but VG < VT0 + VD/κ, then Eq. 22 becomes

I = Is
(
log2

(
1 + e(κ(VG−VT0)−VS)/2UT

)
− log2

(
1 + e(κ(VG−VT0)−VD)/2UT

))

≈ Is


(κ (VG − VT0)− VS

2UT

)2

− e(κ(VG−VT0)−VD)/UT




≈ Is
4U2

T

(κ (VG − VT0)− VS)
2

=
SµCox

2κ
(κ (VG − VT0)− VS)

2 ,

which is just the strong-inversion model in the saturation region. The EKV model switches
between these forms smoothly with no discontinuities.

Figure 4b shows a semilog plot of the saturation currents predicted by the weak-inversion
model, the strong-inversion model, and a typical MOS-transistor current–voltage character-
istic. Note that both the weak-inversion model and the strong-inversion model deviate
substantially from actual MOS-transistor behavior for VG ≈ VT0, which indicates that, if we
were to assume either of these two models in the moderate-inversion region, our conclusions
based on such an assumption would be highly suspect. The simple EKV model represents
an excellent tool for reasoning about CMOS circuits in all regions of operation, including
moderate inversion, which is becoming increasingly important for CMOS circuit design.

4.7 The Onset of Saturation

In Section 4.2, we noted that, if the forward component of the channel current, which
according to the EKV model is given by

IF = Is log
2
(
1 + e(κ(VG−VT0)−VS)/2UT

)
,

is much larger than the reverse one, which is given by

IR = Is log
2
(
1 + e(κ(VG−VT0)−VD)/2UT

)
= Is log

2
(
1 + e(κ(VG−VT0)−VS−VDS)/2UT

)
= Is log

2
(
1 + e(κ(VG−VT0)−VS)/2UTe−VDS/2UT

)
,

then the channel current no longer depends significantly on the drain voltage, which corre-
sponds to the saturation region of operation. In this notion, we find the basis for a generic

13



definition of the onset of saturation for all levels of inversion in terms of an arbitrary param-
eter, A, that is useful from a circuit-design standpoint. We will say that an MOS transistor
is saturated if and only if IF/IR ≥ A, where A � 1. The saturation voltage, VDSsat, would
then be given by the value of VDS that makes IF/IR equal to A.

To find an explicit expression for VDSsat, we set the ratio of IF to IR equal to A and solve
for VDSsat. Doing so, we write that

A =
IF
IR

=
log2

(
1 + e(κ(VG−VT0)−VS)/2UT

)
log2 (1 + e(κ(VG−VT0)−VS−VDSsat)/2UT)

,

which we can invert as follows. By rearranging this equation and taking the square root of
both sides, we find that

log
(
1 + e(κ(VG−VT0)−VS)/2UTe−VDSsat/2UT

)
=

1√
A
log

(
1 + e(κ(VG−VT0)−VS)/2UT

)

= log
(
1 + e(κ(VG−VT0)−VS)/2UT

)1/√A
.

By exponentiating both sides of this equation, we obtain

1 + e(κ(VG−VT0)−VS)/2UTe−VDSsat/2UT =
(
1 + e(κ(VG−VT0)−VS)/2UT

)1/√A
,

which we can rearrange to find that

e(κ(VG−VT0)−VS)/2UTe−VDSsat/2UT =
(
1 + e(κ(VG−VT0)−VS)/2UT

)1/√A − 1.

Rearranging this equation to isolate VDSsat, we get

eVDSsat/2UT =
e(κ(VG−VT0)−VS)/2UT

(1 + e(κ(VG−VT0)−VS)/2UT)
1/

√
A − 1

.

Finally, by taking the natural logarithm of both sides of this equation, we find that VDSsat is
given by

VDSsat = κ (VG − VT0)− VS − 2UT log

((
1 + e(κ(VG−VT0)−VS)/2UT

)1/√A − 1

)
(23)

≈



UT logA, VG < VT0 +

VS
κ(

1− 1√
A

)
(κ (VG − VT0)− VS) , VG > VT0 +

VS
κ
.

In both the weak-inversion and strong-inversion cases, the dependence of VDSsat on A is only
a weak one, being logarithmic in weak inversion and square-root in strong inversion. Thus,
the our choice of A is not critical. By setting A equal to 100, the saturation voltage in weak
inversion predicted by this expression is approximately 4.6UT, which correlates well with the
value of 4UT or 5UT that we identified for VDSsat in Section 4.3. Moreover, the strong-inversion
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Figure 5: Simplified structure of a pMOS transistor fabricated in an n-well technology.

expression for VDSsat approaches the one that we defined in Section 4.4 asymptotically as A
becomes large.

We can also obtain an expression for VDSsat in terms of the saturation current, Isat, by
noting that

Isat ≈ IF = Is log
2
(
1 + e(κ(VG−VT0)−VS)/2UT

)
,

which implies both that

log
(
1 + e(κ(VG−VT0)−VS)/2UT

)
=

√
Isat
Is

(24)

and that
e(κ(VG−VT0)−VS)/2UT = e

√
Isat/Is − 1. (25)

By substituting Eq. 24 and Eq. 25 into Eq. 23, we can express VDSsat in terms of Isat, as

VDSsat = 2UT log
(
e
√
Isat/Is − 1

)
− 2UT log

(
e
√
Isat/AIs − 1

)
(26)

≈



UT logA, Isat � Is

2UT

(
1− 1√

A

)√
Isat
Is
, Isat � Is.

We note that this formulation of the saturation voltage is similar to one introduced by
Montoro and Cunha [9]. They have chosen to define the onset of saturation in terms of
ratio of the mobile charge densities at the source and drain ends of the channel, rather than
in terms of the ratio of the magnitudes of the forward and reverse current components. It
seems that the formulation in terms of IF/IR is more useful from a circuit-design viewpoint,
because we can set up these current components directly using transistor strength ratios
and principles such as the MOS current-division principle [10] in a way that is theoretically
independent of the current level in the transistors.
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(a) (b) (c)

nMOS transistor symbols

(d) (e) (f)

pMOS transistor symbols

Figure 6: Commonly used MOS transistor symbols.

4.8 The pMOS Transistor

Figure 5 depicts the structure of a pMOS transistor fabricated in an n-well CMOS technology.
The source and drain regions of the pMOS transistor are heavily doped p-type regions,
separated from each other by a shallow lightly doped n-type well region that has been formed
at the surface of the p-type substrate. In order to keep the drain-bulk and source-bulk p-n
junctions reverse biased, we must ensure that the drain and source voltages are always less
than or equal to the well voltage, which is often connected to the positive power supply, VDD.
The behavior of the pMOS transistor is complementary to that of the nMOS transistor. The
channel current is carried by holes rather than by electrons and flows from source to drain
rather than from drain to source. The magnitude of the channel current increases as the
applied gate voltage decreases or as the applied source voltage increases.

If we take the threshold voltage of the pMOS transistor to be a positive number, we can
use all of the model equations that we developed for the nMOS transistor for the pMOS tran-
sistor by simply replacing VG with VW − VG, VS with VW − VS, and VD with VW − VD, where
VW is the well voltage. For example, if the well were connected to VDD, as shown in Fig. 5,
we the channel current, I, would be given by

I = Is
(
log2

(
1 + e(κ((VDD−VG)−VT0)−(VDD−VS))/2UT

)
− log2

(
1 + e(κ((VDD−VG)−VT0)−(VDD−VD))/2UT

) )
.
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4.9 MOS Transistor Symbols

Figure 6 show various circuit symbols that are in common use to represent MOS transistors
in circuit schematics. The nMOS symbols shown in Fig. 6a, Fig. 6b, and Fig. 6c, correspond
to the pMOS symbols shown in Fig. 6d, Fig. 6e, and Fig. 6f, respectively. The symbols of
Fig. 6a and Fig. 6d are used primarily by digital circuit designers while those of Fig. 6b
and Fig. 6e are often used by analog circuit designers. We shall use the symbols of Fig. 6a
and Fig. 6d both for analog circuits and for digital ones. The symbols shown in Fig. 6c and
Fig. 6f are used primarily by device physicists who do not regularly have to construct or to
understand complex circuit schematics. While MOS transistors are four-terminal devices,
the bulk terminals of most transistors on integrated circuits are tied to one of the two power
supply rails. For nMOS transistors, the bulk is usually connected to ground, whereas for
pMOS transistors, the bulk is usually tied to VDD. In order to simplify circuit schematics, we
usually suppress drawing the bulk connections if they are connected in this way, as indicated
by the three terminal variants shown in Fig. 6a, Fig. 6b, Fig. 6d, and Fig. 6e. We cannot use
this convention with the symbols of Fig. 6c and Fig. 6f, because the direction of the arrow
on the bulk terminal provides the only visual distinction between the nMOS symbol and the
pMOS one.

The symbols shown in Fig. 6a, Fig. 6c, Fig. 6d, and Fig. 6f all emphasize the functional
symmetry of the source and drain terminals, whereas the symbols shown in Fig. 6b and
Fig. 6e indicate clearly the location of the source terminal of each MOS transistor. While
this direct visual indication of the source terminal’s location may initially seem to ease the
difficulty inherent in parsing a complex circuit schematic, we maintain that these symbols
have several undesirable features that more than offset this often cited “benefit.”

First, in circuit symbols for semiconductor devices, arrows almost invariably indicate the
presence of a p-n junction, with the arrow pointing from the p-type side of the junction to
the n-type side. While it is true that the source-bulk junction of each MOS transistor is a
p-n junction with the orientation indicated by the source arrow in these symbols, the source-
bulk junction is always reverse-biased in normal MOS-transistor operation. Having such an
arrow on the source terminal gives the indication that there is a p-n junction that becomes
forward biased when the devices conducts a current, as would be the case for a diode or a
bipolar transistor. However, in an MOS transistor, the surface is inverted to a greater or
lesser extent when the device conducts a current and the charges that conduct the current
are majority carriers in the inverted channel region rather than minority ones, as they would
be in the base region of a bipolar transistor. Second, the symbols of Fig. 6b and Fig. 6e are
not really distinct enough for us to be able to tell at a single glance which transistors in a
schematic are nMOS and which are pMOS. The presence or absence of a bubble on the gate
provides us with a much greater visual distinction than does the direction of the arrow on
the source terminal.

Finally, most MOS transistors are, in fact, source/drain symmetric devices. In many
circuits, which of the source/drain terminals acts as the source and which acts as the
drain changes with time as the circuit operates. For an nMOS transistor, whichever of
the source/drain terminals is at a higher potential serves as the drain and whichever is at a
lower potential serves as the source. For a pMOS transistor, whichever of the source/drain
terminals is at a higher potential serves as the source and whichever is at a lower potential
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serves as the drain. If the potentials applied to the source/drain terminals of either type
of device are interchanged, the same channel current flows, only in the opposite direction.
In circuits where the potential across an MOS transistor reverses polarity during normal
operation, choosing one of these terminals a priori to be the “source” and labelling it as such
gives an incorrect indication of the actual location of source terminal at some points in time.
In some cases, for such MOS transistors, some people opt to use the symbols of Fig. 6c and
Fig. 6f and those of Fig. 6b and Fig. 6e for those transistors whose source terminal remains
invariant. While this practice is at least not misleading, it is rather cumbersome compared
to using the symbols of Fig. 6a and Fig. 6d uniformly. Moreover, we normally construct
circuit schematics so that nodes with higher potentials appear higher on the page and so
that current flows down the page. In this case, for a vertically oriented nMOS transistor
symbol, the source will be the terminal nearest the bottom of the page and, for a vertically
oriented pMOS transistor, the source will be the terminal nearest the top of the page. If
this is the case, then indicating the location of the source terminal with an arrow is some-
what redundant. MOS transistors whose source and drain terminals may interchange during
circuit operation are often oriented horizontally in circuit schematics.

While the symbols of Fig. 6c and Fig. 6f are source/drain symmetric, they are awkward
compared with those of Fig. 6a and Fig. 6d. In these symbols, the arrow indicates the
presence and polarity of a so-called field-induced p-n junction that exists between the bulk
and the channel, when the surface is (strongly) inverted. For an nMOS transistor, the bulk
is p-type and the inverted channel region is n-type, so the arrow points towards the channel.
For a pMOS transistor, the bulk is n-type and the inverted channel region is p-type, so the
arrow points towards the bulk terminal. However, during normal MOS-transistor operation,
no current flows from the channel to the bulk, because this “junction” is always reverse
biased. While this “junction” is arguably present when the device is “on,” it disappears when
the device is “off.” Moreover, it is only incidental to MOS transistor operation, so it seems
strange to hang the key visual distinction between the nMOS and the pMOS symbols on this
particular feature of the device. Also, as we argued with the source arrows, the bulk arrows
are not really distinct enough for us to be able to tell at a single glance which transistors in a
schematic are nMOS and which are pMOS. In fact, the bulk arrows actually provide less of a
distinction than do the source arrows—at least the nMOS and pMOS transistor symbols with
the source arrows are respectively reminiscent of npn and pnp bipolar transistor symbols,
which is probably why the symbols with the source arrows are used by many analog designers
who began their careers designing bipolar circuits.

4.10 Incremental MOS Transistor Characteristics

For many circuits that we will study, we shall be interested in investigating the incremental
behavior of a circuit about some quiescent operating point—that is, how the circuit responds
if we change one or more inputs to a circuit by a sufficiently small amount that the circuit
acts as a linear system. In effect, the changes have to be small enough that we can replace the
nonlinear current–voltage characteristics of each device in the circuit with a multidimensional
Taylor series expansion about the circuit’s operating point, which we truncate after the first-
order (i.e., linear) terms, without making an unacceptably large error in the analysis. For
this reason, incremental analysis is also called small-signal analysis. In this section, we shall
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(e) (f)

Figure 7: Incremental MOS transistor characteristics.

develop expressions for several important small-signal parameters for the MOS transistor
biased in the saturation region that are valid for all levels of inversion by differentiating the
EKV model with respect to various terminal voltages. There are two reasons for focusing on
the saturation region. First, many analog circuits are designed so that the MOS transistors
are biased into saturation. Second, for those circuits that contain MOS transistors biased
into the ohmic region, by exploit the source/drain symmetry of the MOS transistor, source
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splitting, and superposition, we shall be able to use the incremental relationships that we
derive in this section for saturated MOS transistors to analyze circuits containing MOS
transistors operating in the ohmic region.

Figure 7a shows what we shall consider as our quiescent operating point for the purposes
of computing the incremental properties of an nMOS transistor. If the bulk is connected to
a voltage, VB, other than ground, we can express the saturation current approximately by

Isat = Is log
2
(
1 + e(κ(VGB−VT0)−VSB)/2UT

)
= Is log

2
(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
,

which implies that

log
(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
=

√
Isat
Is

(27)

and that
e(κVG+(1−κ)VB−κVT0−VS)/2UT = e

√
Isat/Is − 1. (28)

From this baseline, we shall consider the effects of a small change in the gate, bulk, source,
and drain-to-source voltages in turn.

A transconductance gain is a measure of by how much a current somewhere in a circuit
changes in response to a change in a voltage at some other location in the circuit. If we
increase the gate voltage of the nMOS transistor, the channel current increases, as shown in
Fig. 7b. The amount by which the channel current increases in response to a small change
in the gate voltage is called the incremental or small-signal transconductance (or sometimes
just simply the transconductance) of the nMOS transistor, which we shall denote by gm. We
can obtain an expression for the transconductance of the nMOS transistor in saturation by
differentiating the saturation current with respect to the gate voltage. Doing so, we obtain

gm =
∂Isat
∂VG

= Is · ∂
∂VG

log2
(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
= Is · 2 log

(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
· e(κVG+(1−κ)VB−κVT0−VS)/2UT

1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT
· κ

2UT
.

We can express the transconductance in terms of the saturation current, Isat, by substituting
Eq. 27 and Eq. 28 into Eq. 29 to obtain

gm =
κ

UT

· Is ·
√
Isat
Is

· e
√
Isat/Is − 1

e
√
Isat/Is

=
κ

UT

·
√
IsIsat ·

(
1− e−

√
Isat/Is

)
(29)

≈




κ

UT
· Isat, Isat � Is

κ

UT
·
√
IsIsat, Isat � Is.

20



If we were to increase the bulk voltage of the nMOS transistor, the saturation current
increases, as shown in Fig. 7c, in much the same way as it did for an increase in the gate
voltage. Thus, the bulk also has a transconductance gain, which we shall denote by gmb. By
performing a nearly identical sequence of steps to those that we followed in computing gm,
we can obtain an expression for the bulk transconductance of the nMOS transistor as

gmb =
∂Isat
∂VB

= Is · ∂
∂VB

log2
(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)

=
1− κ

UT
·
√
IsIsat ·

(
1− e−

√
Isat/Is

)
(30)

≈




1− κ

UT
· Isat, Isat � Is

1− κ

UT
·
√
IsIsat, Isat � Is.

If we increase the source voltage of an nMOS transistor, the saturation current decreases,
as shown in Fig. 7d. The incremental (driving-point) conductance of the source terminal of
the nMOS transistor in saturation is defined a measure of the amount by which the current
flowing into the source increases in response to a small increase in the source voltage. This
quantity is formally given by

gs =
∂IS
∂VS

,

where IS is the current flowing into the source terminal. The saturation current actually flows
out of the source terminal and so has the opposite sign from the source current, IS. Thus,
we can write the incremental conductance looking into the source of the nMOS transistor as

gs =
∂

∂VS
(−Isat)

= −∂Isat
∂VS

= −Is · ∂
∂VS

log2
(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
= −Is · 2 log

(
1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT

)
· e(κVG+(1−κ)VB−κVT0−VS)/2UT

1 + e(κVG+(1−κ)VB−κVT0−VS)/2UT
·
(
− 1

2UT

)

=
1

UT
· Is ·

√
Isat
Is

· e
√
Isat/Is − 1

e
√
Isat/Is

=
1

UT
·
√
IsIsat ·

(
1− e−

√
Isat/Is

)
(31)

≈



Isat
UT

, Isat � Is

1

UT
·
√
IsIsat, Isat � Is.
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From Eq. 29, Eq. 30, and Eq. 31, we can see that very simple relationships hold among
gm, gmb, and gs at all levels of inversion. These relationships are given by

gm = κgs, gmb = (1− κ) gs, and gs = gm + gmb.

In the saturation region, the channel current is approximately independent of the drain-
to-source voltage, so we would expect that the incremental conductance between the source
and drain is approximately zero, as indicated in Fig. 7e. However, in the ohmic region,
the channel current does depend significantly on the drain-to-source voltage, as indicated in
Fig. 7f. We can make explicit the dependence of the channel current on VDS in the ohmic
region by noting that

I = Is
(
log2

(
1 + e(κ(VGB−VT0)−VSB)/2UT

)
− log2

(
1 + e(κ(VGB−VT0)−VDB)/2UT

))
= Isat − Is log

2
(
1 + e(κ(VGB−VT0)−VSB+VSB−VDB)/2UT

)
= Isat − Is log

2
(
1 + e(κ(VGB−VT0)−VSB−VDS)/2UT

)
= Isat − Is log

2
(
1 + e(κ(VGB−VT0)−VSB)/2UTe−VDS/2UT

)
= Isat − Is log

2
(
1 +

(
e
√
Isat/Is − 1

)
e−VDS/2UT

)
.

By differentiating this expression for the channel current with respect to VDS, we can express
the incremental drain-source conductance of the nMOS transistor in the ohmic region as

gds =
∂I

∂VDS

= −Is · ∂

∂VDS
log2

(
1 +

(
e
√
Isat/Is − 1

)
e−VDS/2UT

)

= −Is · 2 log
(
1 +

(
e
√
Isat/(W/L)Is − 1

)
e−VDS/2UT

)

·

(
e
√
Isat/Is − 1

)
e−VDS/2UT

1 +
(
e
√
Isat/Is − 1

)
e−VDS/2UT

·
(
− 1

2UT

)

=
1

UT

· Is log
(
1 +

(
e
√
Isat/Is − 1

)
e−VDS/2UT

)

· e
√
Isat/Is − 1

eVDS/2UT + e
√
Isat/Is − 1

.

While this expression is quite a bit more formidable than those that we have developed for
gm, gmb, and gs, we shall make two observations based upon it. First, as VDS gets larger than
a few UT, the argument of the log goes to unity exponentially, making the log factor go to
zero quickly with increasing VDS. Moreover, the last factor also goes to zero exponentially
under these circumstances. Thus, our assumption that gds ≈ 0 in the saturation region is
generally a good one. Second, we shall examine the value of gds deep in the ohmic region,
when VDS = 0. In this case, we have that

gds|VDS=0 =
1

UT
· Is log

(
1 +

(
e
√
Isat/Is − 1

)
· 1
)
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(a) (b)

Figure 8: Drain characteristics in (a) weak and (b) strong inversion exhibiting the Early
effect.

· e
√
Isat/Is − 1

1 + e
√
Isat/Is − 1

=
1

UT

· Is log
(
e
√
Isat/Is

)
· e

√
Isat/Is − 1

e
√
Isat/Is

=
1

UT

· Is ·
√
Isat
Is

·
(
1− e−

√
Isat/Is

)

=
1

UT
·
√
IsIsat ·

(
1− e−

√
Isat/Is

)
= gs.

Thus, we have established that the value of gds deep in the ohmic region is equal to the
incremental conductance of the source terminal in the saturation region. We can make use
of this fact to determine the value of the source conductance at any particular saturation
current level from a drain characteristic, as indicated in Fig. 8.

4.11 The Early Effect

Drain characteristics of real MOS transistors, especially ones that have lengths that are short
relative to the minimum feature size in a given technology, actually exhibit a finite slope in
the saturation region at all levels of inversion, as shown in Fig. 8, contrary to the predictions
made by the simple EKV model that we have been developing. A markedly similar effect in
bipolar transistors was first investigated and modeled by Jim Early in the early 1950s [11],
so this effect is commonly named for him. This effect results from an increase in the width of
the depletion region surrounding the reverse-biased drain-bulk p-n junction with an increase
in the drain voltage, including in the direction of the channel. The increase in the depletion
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Figure 9: Graphical interpretation of Early’s simple model for channel-length modulation.

region width in this direction reduces the effective length of the channel. Because the current
in saturation depends inversely on the length of the channel, the net result is an increase in
the channel current with increasing drain voltage, and hence drain-to-source voltage. This
effect is also commonly referred to as channel-length modulation, which is perhaps somewhat
more descriptive of its physical origin. Nevertheless, we shall refer to it as the Early effect.

Early proposed a simple empirical expression to model this phenomenon, which translated
into language appropriate to the MOS transistor is given by

I = Isat

(
1 +

VDS

VA

)
,

where Isat is the saturation current predicted by the EKV model and VA is a parameter that
has come to be known as the Early voltage. A simple graphical interpretation of this model is
shown in Fig. 10. The value of VA is positive by convention, but corresponds to the negative of
the VDS-axis intercept of an extrapolated linear fit to a drain characteristic in the saturation
region, as shown in Fig. 10. The larger the value of VA the less pronounced is the Early
effect. The saturation current corresponds to the I-axis intercept of the extrapolated linear
fit. On this simple model, the reciprocal of the slope of the current–voltage characteristic in
saturation is given by

ro =
VA
Isat

.

To the extent that this simple model adequately accounts for the Early effect, we can con-
struct a large-signal circuit whose behavior is formally equivalent to Early’s empirical expres-
sion. We simply connect a linear resistor, which we shall call an Early-effect resistor, whose
value is given by ro in parallel with the channel of a saturated MOS transistor, as shown in
Fig. 10. We shall assume that the saturated MOS transistor’s behavior is predicted by the
EKV model, in particular that the incremental conductance looking into its drain terminal
is essentially zero. We have accounted for this second-order effect by the explicit addition
of a linear parasitic circuit element that is external to an essentially ideal transistor. We
have chosen to encapsulate the Early effect in this way so that we can selectively account
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I = Isat +
VDS

ro

= Isat + VDS · Isat
VA

= Isat

(
1 +

VDS

VA

)

Figure 10: Large-signal equivalent circuit model for the Early effect.

for it in doing a circuit analysis only where it matters. We shall see that neglecting the
Early effect when possible drastically simplifies the analysis process. While accounting for
the Early effect everywhere is not “wrong,” it can certainly be counter productive. Unnec-
essarily accounting for the Early effect greatly complicates the expressions that we obtain
from the analysis process, which makes them harder to interpret. It also markedly increases
our chances of making an error along the way. Learning to recognize where the Early effect
is negligible and where it is not is a very valuable bit of circuit intuition to develop.

Given that the postulated physical mechanism underlying the Early effect is an increase
in the depletion-region width around the drain-bulk junction and that this increase does
not depend on the length of the channel, we should expect that the actual increase in the
channel current for a given increase in the depletion-region width will be smaller for longer
channel lengths. To see this point more clearly, we write the saturation current using the
EKV model for an nMOS transistor as

Isat = Is log
2
(
1 + e(κ(VG−VT0)−VS)/2UT

)
,

which because of the Early effect becomes

I ′sat =
W

L− δL (VDS)
Is log

2
(
1 + e(κ(VG−VT0)−VS)/2UT

)

=
1

1− δL (VDS)

L

· Is log2
(
1 + e(κ(VG−VT0)−VS)/2UT

)

= Isat · 1

1− δL (VDS)

L

≈ Isat

(
1 +

δL (VDS)

L

)
,

where δL (VDS) models the functional dependence of the reduction in channel length on VDS

and where we have assumed that δL� L, so that we can expand (1− x)−1 in a Taylor series
and retain only the linear term. A number of physically plausible empirical forms have been
proposed for δL (VDS) to model solution of the complicated two-dimensional electrostatic
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Figure 11: Transconductance generation efficiency for various levels of inversion.

problem that really exists at the drain end of the channel to account for the Early effect.
For simplicity, we usually choose to make δL (VDS) ∝ VDS, which implies that VA ∝ L. We
typically find empirically that, for any given current level, the extrapolated Early voltage
exhibits a linear dependence on channel length, but usually with a small nonzero offset. It
is also very common that we will observe an increase in the effective Early voltage with an
increase in the level of inversion, but for hand calculations, we often ignore this dependence
and assume that the Early voltage is constant with inversion level.

4.12 Transconductance Generation Efficiency

With the rapid development and proliferation of wireless communication and computing
devices, which operate on batteries, low power consumption has steadily risen to the top of
the list of key system design specifications. The power efficiency of many circuits is related
directly to the ratio of the transconductance gain of the devices in the circuit to the quiescent
bias currents flowing through them. The transconductance factors directly into important
circuit specifications, such as gain and bandwidth, while the quiescent bias current factors
directly into power consumption. This ratio is often called transconductance per unit current.
It is also termed transconductance generation efficiency, because it measures how efficiently
a transistor converts current into transconductance. An important principle involved in
designing power efficient circuits is to use devices with high transconductance generation
efficiency or to bias devices where the transconductance generation efficiency is as large as
possible [12–14].

The bipolar transistors, whose transconductance gain is given by gm = IC/UT, where IC
is the quiescent collector current and UT is the thermal voltage, has the highest transconduc-
tance generation efficiency, of any active device—its value is a constant, given by gm/IC =
1/UT. For this reason, bipolar transistors are still generally preferred to MOS transistors in
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the design of power efficient wireless communication circuits. For MOS transistors, transcon-
ductance generation efficiency is a strong function of bias level, as shown in Fig. 11. Its value
is maximum in weak inversion, given by κ/UT, and begins to decrease monotonically as the
device enters moderate inversion and then strong inversion. For short-channel MOS tran-
sistors that exhibit velocity saturation in strong inversion, the transconductance generation
efficiency degrades even faster than is shown in Fig. 11. In attempting to design circuits
that are power efficient, we should bias transistors where their transconductance generation
efficiency is highest, which suggests that we bias MOS transistors in either weak or moderate
inversion, rather than in strong inversion.

By using the expression that we derived in Section 4.10 for the transconductance gain of
the MOS transistor, we can develop a simple analytical expression for the transconductance
generation efficiency of an MOS transistor in terms of its saturation current that is valid for
all levels of inversion. To do so, we simply divide Eq. 29 by Isat to obtain

gm
Isat

=
κ

UT
·
√
Is
Isat

·
(
1− e−

√
Isat/Is

)

≈




κ

UT

, Isat � Is

κ

UT

·
√
Is
Isat

, Isat � Is.

It is possible to use this expression to choose systematically W/L ratios for MOS transistors
in analog circuits in order to achieve a desired degree of power efficiency [13].
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