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1 Source Splitting

In this handout, we shall describe two source transformations, called source splitting, by
which we can split a single voltage source or a single current source, respectively, into multiple
voltage sources or current sources of the same value. These source transformations are not
included in many elementary courses on circuit analysis. When they are described, the main
motivation for applying them is almost invariably to create situations in which we can apply
either Thévenin’s theorem or Norton’s theorem to a portion of some circuit [1–3]. In DPI
circuit analysis, however, we shall primarily use these transformations to create situations
in which we can apply superposition where none existed [4]. After describing the two types
of source splitting, we shall illustrate each one in this context with worked examples.

The first of the two transformations, called voltage-source splitting, is illustrated in Fig. 1.
Consider a single voltage source, V , connected to an arbitrary circuit, as shown in Fig. 1a.
We can add another voltage source with value V in parallel with the first one, as shown in
Fig. 1b. In many elementary circuits texts, such a parallel connection of voltage sources is
termed a “forbidden” configuration, because if the voltage sources happened to have different
values, Kirchhoff’s voltage law (KVL) would be violated around the loop containing the two
voltage sources. However, in this instance, there is no such violation of KVL, because we have
made the values of the two sources equal to each other. Finally, we can divide the branches
connected to the positive terminal of the voltage sources, connecting these other branches
to the individual voltage sources, as shown in Fig. 1c, without altering any of the KVL
equations for the circuit. All of the loops in the circuit that contained the voltage source,
such as loop A in Fig. 1, still contain one such voltage source. Loops that go through the
node that was split, such as loop B in Fig. 1, now contain a voltage drop of V followed by a
voltage rise of V , which leaves the KVL equations around such loops unaltered. In effect, we

(a) (b) (c)

Figure 1: Voltage-source splitting. (a) A single voltage source, V , connected to an arbitrary
circuit. (b) We can add another voltage source in parallel with the original one as long as it
has the same value as the first one. (c) We can divide the branches connected to the positive
terminals of the voltage sources, connecting them to the separate voltage sources, as shown,
without affecting the behavior of the circuit.
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Figure 2: Current-source splitting. (a) A single current source, I, connected to an arbitrary
circuit. (b) We can add another current source in series with the original one as long as it has
the same value as the first one. (c) We can connect the node between the two current sources
to any other node in the circuit, as shown, without altering the behavior of the circuit.

have added and subtracted V from each such equation. The Kirchhoff’s current law (KCL)
equation that held at the node connected to the common negative terminal of the voltage
sources also remains unaltered. Thus, the behavior of a circuit remains unaltered under this
transformation. Moreover, it is easy to see that we can add as many copies of the voltage
source as there are branches connected to the positive terminal. This transformation can also
be visualized as shifting voltage source V through one of the nodes to which it was connected;
consequently, voltage-source splitting is also sometimes referred to as voltage-source shifting.

The second transformation, called current-source splitting, is illustrated in Fig. 2. Here,
a single current source, I, connected to an arbitrary circuit, as shown in Fig. 2a. We can
add another current source with value I in series with the first one, as shown in Fig. 2b.
Like the parallel connection of voltage sources, such a series connection of current sources is
termed a “forbidden” configuration in many elementary texts, because if the current sources
happened to have different values, KCL would be violated at the node between the current
sources. As before, there is no such violation of KCL in this situation, because we have made
the values of the two sources equal to each other. The voltage on the intermediate node is
indeterminate, because the current sources will continue to pass the same current regardless
of the voltage across them. This node voltage can take on any value and the circuit will
still function as it did before; a current of I will still be sourced to node A and a current
of I will still be sunk from node B, as was the original case. We can, in fact, connect this
intermediate node to any other node in the circuit, such as node C, as shown in Fig. 2c,
without altering any of the KCL equations in the circuit. The KCL equations of the nodes to
which the original current source was connected, such as nodes A and B, remain unaltered.
The KCL equation of a node, such as node C, connected to a pair of current sources will have
I added and subtracted from it, leaving it unaffected. Because the current sources inject
no net current into such nodes, their voltages will remain unaltered. Thus, the behavior
of a circuit remains unchanged by this transformation. Moreover, it is easy to see that we
can add as many copies of the current source as we would like in series with the original,
connecting the intermediate nodes to any other nodes in the circuit. We shall often find it
convenient to connect these intermediate nodes to ground.

It is interesting to note that neither of these source-splitting transformations rely on
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Figure 3: Example illustrating the use of voltage-source splitting and superposition to
calculate the voltage gain of a bridged ladder network.

assumptions of linearity; rather, they are based on the notions of ideal voltage and current
sources, KVL, and KCL. Thus, we can apply them both to linear circuits and to nonlinear
circuits. We shall now illustrate the use of each of these source-splitting transformations
in conjunction with superposition to analyze simple circuits. Superposition is a property
of linear circuits, so such applications of source splitting apply only to linear circuits or to
nonlinear circuits for excursions about a quiescent operating point that are sufficiently small
that the circuit is incrementally linear.

Example 1.1
Consider the bridged ladder circuit shown in Fig. 3a. We would like to calculate the voltage
gain of this circuit, Vout/Vin. If the resistor connecting Vin directly to Vout, R5, were absent,
this circuit would be a ladder network, and the required voltage gain could be written out by
inspection using voltage dividers or current dividers and Ohm’s law. Resistor R5 provides
feedback from the output back to the input, preventing us from applying such techniques
directly. There are many ways of solving this problem. For example, we could apply a delta-
wye transformation to the delta comprising resistors R1, R3, and R5 to obtain an equivalent
purely series-parallel network that we could solve by inspection using resistive dividers and
Ohm’s law. Alternatively, we could apply a wye-delta transformation to the wye comprising
resistors R1, R2, and R3 to obtain a different equivalent network that we could also solve
by inspection. However, such transformations are difficult to remember, the resistor values
in the equivalent circuit are complicated combinations of the resistor values in the original
circuit. Moreover, the equivalent circuit bears little resemblance to the original circuit and
provides little design-oriented insight into the functioning of the original circuit.
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We could also apply node-voltage analysis or mesh-current analysis, solving for the out-
put voltage by Cramer’s rule or Gaussian elimination. Whereas there are three mesh-current
equations, there are only two node-voltage equations, so nodal analysis seems easier in this
case. Calling the intermediate node voltage VA, we can write the nodal equations by inspec-
tion as
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We can write an equation for Vout, using Cramer’s rule on the preceding equation, as the
following ratio of two determinants
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Clearing out all of the nested fractions and dividing both sides of this equation by Vin, we
obtain an expression for the required voltage gain as

Vout

Vin
=

R2R4R5 +R2R3R4 +R1R3R4 +R1R2R4

R2R4R5 +R2R3R5 +R2R3R4 +R1R4R5 +R1R3R5 +R1R3R4 +R1R2R5 +R1R2R4
.

All of the component values in this formidable expression for the voltage gain of the circuit
of Fig. 3a are multiplied together, almost completely obscuring their relative significance
in determining the final answer. In many cases, design-oriented insight into a circuit is
confounded by matrix algebra when we try to apply node-voltage analysis or mesh-current
analysis, especially when the circuits become more complex than this five-resistor circuit.

We can also analyze the circuit of Fig. 3a by splitting Vin into two replica voltage sources,
as shown in Fig. 3b. By doing so, we can calculate Vout by superposition as

Vout = Vout1 + Vout2, (1)

where Vout1 is the component of Vout due to the first copy of Vin and Vout2 is the component of
Vout due to the second copy of Vin. Each of the two terms in this equation can be written by
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Figure 4: Bridged ladder network circuit.

inspection using resistive dividers and Ohm’s law. With the copy of Vin on branch 2 shorted,
as shown in Fig. 3c, we can write the output voltage as

Vout1 = (R4∥R5) I3 = (R4∥R5) ·
Vin

R1 + (R2∥ (R3 + (R4∥R5)))︸ ︷︷ ︸
I1

· R2

R2 +R3 + (R4∥R5)︸ ︷︷ ︸
I3/I1

. (2)

Similarly, with the copy of Vin on branch 1 shorted, as shown in Fig. 3d, we can write the
output voltage as

Vout2 = R4I4 = R4 ·
Vin

R5 + (R4∥ (R3 + (R1∥R2)))︸ ︷︷ ︸
I5

· R3 + (R1∥R2)

R4 +R3 + (R1∥R2)︸ ︷︷ ︸
I4/I5

. (3)

By substituting Eqs. 2 and 3 into Eq. 1, we can write the voltage gain of the circuit of Fig. 3a
as

Vout

Vin
=

R4∥R5

R1 + (R2∥ (R3 + (R4∥R5)))
· R2

R2 +R3 + (R4∥R5)
+

R4∥ (R3 + (R1∥R2))

R5 + (R4∥ (R3 + (R1∥R2)))
.

While this expression for the gain of the circuit of Fig. 3a is by no means simple, the terms
are combined in natural groupings of series and parallel combinations of resistors, allowing
us to compare them easily. Moreover, this style of analysis requires us to think about how
currents propagate through the circuit and divide at each point. Such a mental exercise
yields direct insight into how the circuit actually works, not just merely the required answer.

Example 1.2
Consider the bridged resistive ladder circuit shown in Fig. 4. We shall use source splitting
and superposition to calculate the equivalent input resistance of the bridge, Rin, as indicated
in Fig. 4. To determine Rin, we shall apply a test voltage source of value Vin to the circuit
and determine the resulting current flowing into the circuit, Iin, as shown in Fig. 5a. First,
we split Vin into two replica sources, as shown. We are interested computing Iin, the total
current flowing through the loop indicated. There are four components of Iin, two excited by
the input source on branch 1 and two excited by the input source on branch 2. To facilitate
the calculation of these four currents, we shall denote by Iinij the component of Iin excited
in the ith branch due to the replica source on the jth branch. We consider each input source
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Figure 5: Calculation of the input resistance of the bridged ladder network using voltage-
source splitting and superposition.

in turn, computing the components of Iin that it excites, and use superposition to put the
results together. These two situations are depicted in Fig. 5b and Fig. 5c, along with the
components of Iin relevant to each.

We write Iin as

Iin =
Vin

R1 + (R2∥ (R3 + (R4∥R5)))︸ ︷︷ ︸
Iin11

(

1− R2

R2 +R3 + (R4∥R5)︸ ︷︷ ︸
I3/Iin11

· R4

R4 +R5︸ ︷︷ ︸
Iin21/I3

)

+
Vin

R5 + (R4∥ (R3 + (R1∥R2)))︸ ︷︷ ︸
Iin22

(

1− R4

R4 +R3 + (R1∥R2)︸ ︷︷ ︸
I3/Iin22

· R2

R1 +R2︸ ︷︷ ︸
Iin12/I3

)

.

From this expression, we get an expression for Rin = Vin/Iin as

Rin =
Vin

Iin
=

R1 + (R2∥ (R3 + (R4∥R5)))

1− R4

R4 +R3 + (R1∥R2)
· R4

R4 +R5

∥∥∥∥∥
R5 + (R4∥ (R3 + (R1∥R2)))

1− R2

R2 +R3 + (R4∥R5)
· R2

R1 +R2

.

Example 1.3
Consider the unbalanced resistive Wheatstone bridge circuit shown in Fig. 6. We shall use
source splitting and superposition to calculate the equivalent input resistance of the bridge,
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Figure 6: Unbalanced Wheatstone bridge circuit.

Rin, as indicated in Fig. 6. To determine Rin, we can use one of two methods. We can
apply a test voltage source of value Vin and determine the resulting current flowing into the
circuit, Iin. Alternatively, we can apply a test current source of value Iin and determine the
voltage, Vin, that results across the port. In either case, we can apply source splitting and
superposition to facilitate the calculation of Rin. For this example, we shall consider each
method in turn.

First, we shall consider the voltage-source method. We apply a test voltage source, Vin,
across the input port, as shown in Fig. 7a. For convenience, we choose the bottom node to
be ground and we split Vin into two replica sources, as shown. We are interested computing
Iin, the total current flowing through the loop indicated. There are four components of Iin,
two excited by the input source on branch 1 and two excited by the input source on branch
2. To facilitate the calculation of these four currents, we shall consider each input source
in turn, computing the components of Iin that it excites, and use superposition to put the
results together. These two situations are depicted in Fig. 7b and Fig. 7c, along with the
components of Iin relevant to each.

We write Iin as

Iin =
Vin

R1 + (R3∥ (R5 + (R2∥R4)))︸ ︷︷ ︸
Iin11

(

1− R3

R3 +R5 + (R2∥R4)︸ ︷︷ ︸
I5/Iin11

· R4

R2 +R4︸ ︷︷ ︸
Iin21/I5

)

+
Vin

R2 + (R4∥ (R5 + (R1∥R3)))︸ ︷︷ ︸
Iin22

(

1− R4

R4 +R5 + (R1∥R3)︸ ︷︷ ︸
I5/Iin22

· R3

R1 +R3︸ ︷︷ ︸
Iin12/I5

)

.

Now, consider the first quantity in parenthesis in the above expression for Iin. We can
express it as

1− R3

R3 +R5 + (R2∥R4)
· R4

R2 +R4
=

R3 +R5 + (R2∥R4)− R3 ·
R4

R2 +R4

R3 +R5 + (R2∥R4)

=
R3

(
1− R4

R2 +R4

)
+R5 + (R2∥R4)

R3 +R5 + (R2∥R4)
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Figure 7: Calculation of the input resistance of the unbalanced Wheatstone Bridge using
voltage-source splitting and superposition.

=
R3 ·

R2

R2 +R4
+R5 + (R2∥R4)

R3 +R5 + (R2∥R4)

=
R3 (R2∥R4) /R4 +R5 + (R2∥R4)

R3 +R5 + (R2∥R4)

=
(1 +R3/R4) (R2∥R4) +R5

R3 +R5 + (R2∥R4)
.

By a similar sequence of steps, we can transform the second expression in parenthesis as

1− R4

R4 +R5 + (R1∥R3)
· R3

R1 +R3
=

(1 +R4/R3) (R1∥R3) +R5

R4 +R5 + (R1∥R3)
.

Thus, we can express Rin = Vin/Iin as

Rin =
(R1 + (R3∥ (R5 + (R2∥R4)))) (R3 +R5 + (R2∥R4))

(1 +R3/R4) (R2∥R4) +R5∥∥∥∥∥
(R2 + (R4∥ (R5 + (R1∥R3)))) (R4 +R5 + (R1∥R3))

(1 +R4/R3) (R1∥R3) +R5
.

Next, we shall consider the current-source method. We apply a test current source, Iin,
across the input port, as shown in Fig. 8a. For convenience, we choose the left-most node of
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Figure 8: Calculation of the input resistance of the unbalanced Wheatstone Bridge using
current-source splitting and superposition.

the bridge to be ground and we split Iin into two replica sources, as shown. We are interested
computing Vin, the total voltage that develops across the input port. The input voltage is
given by the difference between node voltages V1 and V3. To facilitate the calculation of these
voltages, we consider each input source in turn, computing the value of Vin that results, and
use superposition to put them together. These two situations are depicted in Fig. 8b and
Fig. 8c.

For the first source, we can compute V1 as R1 times I1, which is given by

V1 = R1 ·
R2 + (R5∥ (R4 +R3))

R1 +R2 + (R5∥ (R4 +R3))︸ ︷︷ ︸
I1/Iin

·Iin.

Likewise, we can compute V3 as R3 times I3, which is given by

V3 = R3 ·
R1

R1 +R2 + (R5∥ (R4 +R3))︸ ︷︷ ︸
I2/Iin

· R5

R5 +R4 +R3︸ ︷︷ ︸
I3/I2

·Iin.

Thus, the component of Vin due to the first input current source is given by

Vin = V1 − V3

= Iin ·
R1

R1 +R2 + (R5∥ (R4 +R3))

(
R2 + (R5∥ (R4 +R3))−

R3R5

R5 +R4 +R3

)

= Iin ·
R1

R1 +R2 + (R5∥ (R4 +R3))

(

R2 +
R5R4

R5 +R4 +R3
+

R5R3

R5 +R4 +R3

− R3R5

R5 +R4 +R3

)

= Iin ·
R1

R1 +R2 + (R5∥ (R4 +R3))

(
R2 +

R4R5

R5 +R4 +R3

)
.
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For the second source, we can again compute V1 as R1 times I1, which is given by

V1 = −R1 ·
R3

R3 +R4 + (R5∥ (R1 +R2))︸ ︷︷ ︸
I4/Iin

· R5

R5 +R1 +R2︸ ︷︷ ︸
I1/I4

·Iin.

Likewise, we can compute V3 as R3 times I3, which is given by

V3 = −R3 ·
R4 + (R5∥ (R1 +R2))

R3 +R4 + (R5∥ (R1 +R2))︸ ︷︷ ︸
I3/Iin

·Iin.

Thus, the component of Vin due to the second input current source is given by

Vin = V1 − V3

= Iin ·
R3

R3 +R4 + (R5∥ (R1 +R2))

(
− R1R5

R5 +R1 +R2
+ (R4 + (R5∥ (R1 +R2)))

)

= Iin ·
R3

R3 +R4 + (R5∥ (R1 +R2))

(

R4 +
R5R1

R5 +R1 +R2
+

R5R2

R5 +R1 +R2

− R5R1

R5 +R1 +R2

)

= Iin ·
R3

R3 +R4 + (R5∥ (R1 +R2))

(
R4 +

R2R5

R5 +R1 +R2

)
.

By superposing both components of Vin and dividing both sides of the equation by Iin, we
find Rin = Vin/Iin to be

Rin =
R1

R1 +R2 + (R5∥ (R4 +R3))

(
R2 +

R4R5

R5 +R4 +R3

)

+
R3

R3 +R4 + (R5∥ (R1 +R2))

(
R4 +

R2R5

R5 +R1 +R2

)
.

Example 1.4
Consider the infinite hexagonal mesh of resistors, each of which has value R, shown in Fig. 9a.
We would like to determine the driving-point resistance, Rin, looking into the port shown
(i.e., between two adjacent nodes). We could apply a voltage source to the port and see
how much current is drawn by the circuit. Alternatively, we can apply a current source to
the port and see how much voltage develops across the current source. In either case, the
required resistance is given by the ratio of the voltage across the port to the current flowing
into the port. In this case, it is convenient to chose the latter method, as shown in Fig. 9b.
At this point, our task may seem somewhat daunting. It is unclear whether this problem
can be solved using node-voltage analysis or using mesh-current analysis. At the very least,
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(e)

Figure 9: Example illustrating the use of current-source splitting and superposition.

we would have to invent some clever scheme for indexing the nodes on this hexagonal grid,
which is itself nontrivial.

Instead, we shall split the test current source and then apply superposition to solve the
problem. First, we split Iin into two replica sources, as shown in Fig. 9c. We can use
superposition to write Vin as

Vin = Vin1 + Vin2,

where Vin1 is the component of Vin due to the replica current source attached to port 1 and
Vin2 is the component of Vin due to the test source attached to port 2. With the current
source on port 2 open circuited, we are injecting a current Iin into one location in this infinite
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(a) (b)

Figure 10: (a) Inverting amplifier circuit. (b) Linearized model for calculating the input
resistance R′

in, assuming the op-amp has a finite gain, A, and output resistance, Ro.

network, as shown in Fig. 9d. By symmetry, the current Iin must split evenly into six parts.
We can calculate Vin using Ohm’s law as RIin/6 = RIin/6. With the current source on port
1 open circuited, we are sinking a current Iin from one location in the infinite network, as
shown in Fig. 9e. Again, by symmetry, the current Iin must be pulled together from the
network in six equal parts. We can again calculate Vin using Ohm’s law as RIin/6 = RIin/6.
Superposing these results, we have that

Vin = R · Iin
6

+R · Iin
6

= R · Iin
3
,

which implies that

Rin =
Vin

Iin
=

R

3
.

Example 1.5
Consider the inverting amplifier circuit comprising an op-amp and two resistors, R1 and R2,
shown in Fig. 10. We shall assume that the op-amp has a finite voltage gain, A, and a finite
output resistance, Ro. We would like to determine the equivalent input resistance, Rin, of
this circuit. Because the input port is only connected to a single branch, it does not seem
like we will be able to apply source splitting to facilitate the calculation. However, if we
recognize that we can compute Rin as

Rin = R1 +R′
in,

where R′
in is the equivalent input resistance of the circuit looking directly into the virtual

ground node of the op-amp, then we can apply source splitting to perform the calculation
of R′

in.
Figure 10b shows the equivalent circuit model that we shall use for the op-amp in order

to compute R′
in. We shall apply a test voltage source, V ′

in, to the circuit, as shown in Fig. 11a,
and determine the amount of current I ′in drawn into the circuit as a result. First, we split
V ′
in into two replica sources, as shown. We are interested computing I ′in, the total current

flowing through the loop indicated. There are four components of I ′in, two excited by the
input source on branch 1 and two excited by the input source on branch 2. We consider each
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(a) (b)

(c) (d)

Figure 11: Calculation of the input resistance, R′
in, of the inverting amplifier using voltage-

source splitting and superposition.

input source in turn, computing the components of I ′in that it excites, and use superposition
to put the results together. First, consider the situation shown in Fig. 11b, in which the
test source on branch 2 is disabled. In this case, even though we apply V ′

in on branch 1, no
current flows into this branch, so I ′in11 is zero. However, the dependent source will cause a
current of AV ′

in/ (Ro +R2) to flow into the second branch of the circuit, which we denote by
I ′in21. Next, consider the situation depicted in Fig. 11c, in which the test source on branch 1
is disabled. In this case, the dependent source has a value of zero, because V is zero, and a
current of V ′

in/ (Ro +R2) flows into branch 2, because of the test source that we have applied
on that branch. As in the first case, there is no current on branch 1, so I ′in12 is zero as well.

Thus, we have that

I ′in =
AV ′

in

Ro +R2︸ ︷︷ ︸
I ′in21

+
V ′
in

Ro +R2︸ ︷︷ ︸
I ′in22

= V ′
in ·

A+ 1

Ro +R2
,

from which we can write R′
in as

R′
in =

V ′
in

I ′in
=

Ro +R2

A+ 1
.

Therefore, we can express the input resistance, Rin, as

Rin = R1 +R′
in = R1 +

Ro +R2

A+ 1
,

which approaches R1 as A gets large.
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