Folding the Differential Pair for Low-Voltage Applications

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Laboratory School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853–5401

> minch@ece.cornell.edu http://people.ece.cornell.edu/minch

Conventional MOS Differential Pairs

- The differential pair is widely used as an input stage for operational amplifiers, comparators, mixers, and many other circuits.
- This circuit does not function well with a low powersupply voltage, because transistor M_b shuts off if V_1 and V_2 get too close to the appropriate rail.

Conventional MOS Differential Pairs

Differential-pair intuition:

- ► $I_1 = f(V_1, -V)$ and $I_2 = f(V_2, -V)$, where *f* is expansive.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Capacitive Voltage Dividers

- The voltage on the middle node is a weighted sum of the two input voltages.
- ► If node *V* is really floating, then the inputs couple into the floating node all the way down to DC!
- ► The charge *Q* linearly offsets the *V*. The charge can be adjusted either optically or electronically.

Floating-Gate MOS Transitors

- ▶ The capacitors C_1 and C_2 are called *control gates*.
- ► If floating-gate voltage, *V*, is a weighted sum of the control-gate voltages.
- ► The floating-gate charge, Q, can be thought of as giving us a programmable threshold voltage.

Differential-pair intuition:

- ► $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where f is expansive.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Differential-pair intuition:

- ► $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where f is expansive.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Sign difference permits us to *fold* M_b relative to M_1 and M_2 .

Differential-pair intuition:

- ► $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where f is expansive.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

 M_{1b} and M_{2b} provide mirror copies of I_1 and I_2 .

Differential-pair intuition:

- ► $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where f is expansive.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

 M_{1c} and M_{2c} mitigate the C_{gd} 's of transistors M_{1b} and M_{2b} .

- \triangleright C₁ sets the linear range and transconductance gain.
- C₂ controls by how much V changes in response to changes in either $V_{\rm cm}$ or $I_{\rm b}$.
- Input and output voltage ranges are from rail-to-rail.
- \blacktriangleright Transconductance gain nearly constant with $V_{\rm cm}$.

Output Currents vs. V_{dm} ($I_b = 316 \text{ pA}$)

Output Currents vs. $V_{\rm dm} (I_{\rm b} = 31.6 \,\mu {\rm A})$

Transconducance Gain vs. $V_{\rm cm}$

Output Currents vs. V_{out} ($I_b = 300 \text{ pA}$)

Output Currents vs. V_{out} ($I_b = 31.6 \,\mu A$)

Common-Mode Output Current vs. V_{out}

Variations on a Theme...

- Add resistive feedback to the floating gates in parallel with C_2 controlled by V_r .
- Resistive path introduces a first-order low-frequency roll-off whose corner frequency is set by $C_{\rm T}$ and $V_{\rm r}$.
- At DC, the circuit is a pair of current mirrors sharing I_b equally. Above the corner, it acts as the FG circuit.

Variations on a Theme...

- Use feedback transistors as switches gated by a clock signal, ϕ .
- When ϕ is high, the circuit rebalances itself. When ϕ is low, the circuit acts just like the FG circuit.
- Injected charge is rejected as a common-mode signal if it matches on both sides.

Variations on a Theme...

- Rail-to-rail input common-mode range, wide output voltage swing.
- Acts very much like an emitter-degenerated bipolar differential pair.
- Input resistance primarily determined by *R* because base nodes are basically clamped by shunt feedback.

Incremental High-Frequency Analysis

• Given that $g_{\rm m}(r_{\rm on} || 2r_{\rm op}) \gg 1$ and $C_3 \ll C_2$, we can show that

$$i_{\rm dm} \equiv i_1 - i_2 = g_{\rm m} \frac{C_1}{C_{\rm T}} \frac{1 - sC_3/g_{\rm m}}{1 + s(C_3 + C_4)/g_{\rm s}} v_{\rm dm}$$

where $C_{\rm T} \equiv C_1 + C_2 + C_3 + C_b$.

Incremental High-Frequency Analysis

...and that

$$i_{\rm cm} \equiv \frac{i_1 + i_2}{2} \\ = \frac{C_1/C_2}{r_{\rm on} \|2r_{\rm op}} \frac{(1 - sC_3/g_{\rm m}) (1 + s(r_{\rm on} \|2r_{\rm op})(C_2 + C/2))}{(1 + s(C_3 + C_4)/g_{\rm s}) (1 + s(C_2 \|(C_1 + C_3 + C_{\rm b}))/(g_{\rm m}C_2/C_{\rm T}))} v_{\rm cm}$$

Incremental High-Frequency Analysis

...and so

$$CMRR = \frac{i_{dm}/v_{dm}}{i_{cm}/v_{cm}} = g_{m} (r_{on} \| 2r_{op}) \frac{C_{2}}{C_{T}} \frac{(1 + s(C_{2} \| (C_{1} + C_{3} + C_{b}))/(g_{m}C_{2}/C_{T}))}{(1 + s(r_{on} \| 2r_{op})(C_{2} + C/2))}$$

Folded FGMOS Differential Pair Layout

Chip Photomicrograph

