Folding the Differential Pair for Low-Voltage Applications

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Laboratory School of Electrical and Computer Engineering
Cornell University
Ithaca, NY 14853-5401
minch@ece.cornell.edu
http://people.ece.cornell.edu/minch

Conventional MOS Differential Pairs

- The differential pair is widely used as an input stage for operational amplifiers, comparators, mixers, and many other circuits.
- This circuit does not function well with a low powersupply voltage, because transistor M_{b} shuts off if V_{1} and V_{2} get too close to the appropriate rail.

Conventional MOS Differential Pairs

Differential-pair intuition:

- $I_{1}=f\left(V_{1},-V\right)$ and $I_{2}=f\left(V_{2},-V\right)$, where f is expansive.
$-V$ adjusts itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.

Capacitive Voltage Dividers

$$
\begin{gathered}
\quad-C_{1}\left(V_{1}-V\right)-C_{2}\left(V_{2}-V\right)=Q \\
\Rightarrow\left(C_{1}+C_{2}\right) V=C_{1} V_{1}+C_{2} V_{2}+Q \\
\Rightarrow V=\frac{C_{1}}{C_{1}+C_{2}} V_{1}+\frac{C_{2}}{C_{1}+C_{2}} V_{2}+\frac{Q}{C_{1}+C_{2}}
\end{gathered}
$$

- The voltage on the middle node is a weighted sum of the two input voltages.
- If node V is really floating, then the inputs couple into the floating node all the way down to DC !
The charge Q linearly offsets the V. The charge can be adjusted either optically or electronically.

Floating-Gate MOS Transitors

- The capacitors C_{1} and C_{2} are called control gates.
- If floating-gate voltage, V, is a weighted sum of the control-gate voltages.
- The floating-gate charge, Q, can be thought of as giving us a programmable threshold voltage.

A Folded Floating-Gate Differential Pair

Differential-pair intuition:

- $I_{1}=f\left(V_{1}, V\right)$ and $I_{2}=f\left(V_{2}, V\right)$, where f is expansive.
- V adjusts itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.

A Folded Floating-Gate Differential Pair

Differential-pair intuition:

- $I_{1}=f\left(V_{1}, V\right)$ and $I_{2}=f\left(V_{2}, V\right)$, where f is expansive.
- V adjusts itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.

Sign difference permits us to fold M_{b} relative to M_{1} and M_{2}.

A Folded Floating-Gate Differential Pair

Differential-pair intuition:

- $I_{1}=f\left(V_{1}, V\right)$ and $I_{2}=f\left(V_{2}, V\right)$, where f is expansive.
- V adjusts itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.
$M_{1 \mathrm{~b}}$ and $M_{2 \mathrm{~b}}$ provide mirror copies of I_{1} and I_{2}.

A Folded Floating-Gate Differential Pair

Differential-pair intuition:

- $I_{1}=f\left(V_{1}, V\right)$ and $I_{2}=f\left(V_{2}, V\right)$, where f is expansive.
- V adjusts itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.
$M_{1 \mathrm{c}}$ and $M_{2 \mathrm{c}}$ mitigate the C_{gd} 's of transistors $M_{1 \mathrm{~b}}$ and $M_{2 \mathrm{~b}}$.

A Folded Floating-Gate Differential Pair

- C_{1} sets the linear range and transconductance gain.
- C_{2} controls by how much V changes in response to changes in either V_{cm} or I_{b}.
- Input and output voltage ranges are from rail-to-rail.
- Transconductance gain nearly constant with V_{cm}.

Output Currents vs. $V_{\mathrm{dm}}\left(I_{\mathrm{b}}=316 \mathrm{pA}\right)$

Output Currents vs. $V_{\mathrm{dm}}\left(I_{\mathrm{b}}=31.6 \mu \mathrm{~A}\right)$

Transconducance Gain vs. V_{cm}

Output Currents vs. $V_{\text {out }}\left(I_{\mathrm{b}}=300 \mathrm{pA}\right)$

Output Currents vs. $V_{\text {out }}\left(I_{\mathrm{b}}=31.6 \mu \mathrm{~A}\right)$

Common-Mode Output Current vs. $V_{\text {out }}$

Variations on a Theme...

- Add resistive feedback to the floating gates in parallel with C_{2} controlled by V_{r}.
- Resistive path introduces a first-order low-frequency roll-off whose corner frequency is set by C_{T} and V_{r}.
- At DC, the circuit is a pair of current mirrors sharing I_{b} equally. Above the corner, it acts as the FG circuit.

Variations on a Theme...

- Use feedback transistors as switches gated by a clock signal, ϕ.
- When ϕ is high, the circuit rebalances itself. When ϕ is low, the circuit acts just like the FG circuit.
- Injected charge is rejected as a common-mode signal if it matches on both sides.

Variations on a Theme...

- Rail-to-rail input common-mode range, wide output voltage swing.
- Acts very much like an emitter-degenerated bipolar differential pair.
- Input resistance primarily determined by R because base nodes are basically clamped by shunt feedback.

Incremental High-Frequency Analysis

- Given that $g_{\mathrm{m}}\left(r_{\text {on }} \| 2 r_{\text {op }}\right) \gg 1$ and $C_{3} \ll C_{2}$, we can show that

$$
i_{\mathrm{dm}} \equiv i_{1}-i_{2}=g_{\mathrm{m}} \frac{C_{1}}{C_{\mathrm{T}}} \frac{1-s C_{3} / g_{\mathrm{m}}}{1+s\left(C_{3}+C_{4}\right) / g_{\mathrm{s}}} v_{\mathrm{dm}}
$$

where $C_{\mathrm{T}} \equiv C_{1}+C_{2}+C_{3}+C_{\mathrm{b}}$.

Incremental High-Frequency Analysis

...and that
$i_{\mathrm{cm}} \equiv \frac{i_{1}+i_{2}}{2}$
$=\frac{C_{1} / C_{2}}{r_{\text {on }} \| 2 r_{\text {op }}} \frac{\left(1-s C_{3} / g_{\mathrm{m}}\right)\left(1+s\left(r_{\mathrm{on}} \| 2 r_{\mathrm{op}}\right)\left(C_{2}+C / 2\right)\right)}{\left(1+s\left(C_{3}+C_{4}\right) / g_{\mathrm{s}}\right)\left(1+s\left(C_{2} \|\left(C_{1}+C_{3}+C_{\mathrm{b}}\right)\right) /\left(g_{\mathrm{m}} C_{2} / C_{\mathrm{T}}\right)\right)} v_{\mathrm{cm}}$

Incremental High-Frequency Analysis

...and so
$\mathrm{CMRR} \equiv \frac{i_{\mathrm{dm}} / v_{\mathrm{dm}}}{i_{\mathrm{cm}} / v_{\mathrm{cm}}}=g_{\mathrm{m}}\left(r_{\mathrm{o} n} \| 2 r_{\mathrm{op}}\right) \frac{C_{2}}{C_{\mathrm{T}}} \frac{\left(1+s\left(C_{2} \|\left(C_{1}+C_{3}+C_{\mathrm{b}}\right)\right) /\left(g_{\mathrm{m}} C_{2} / C_{\mathrm{T}}\right)\right)}{\left(1+s\left(r_{\mathrm{o}} \| 2 r_{\mathrm{o} p}\right)\left(C_{2}+C / 2\right)\right)}$

Folded FGMOS Differential Pair Layout

Chip Photomicrograph

