A Folded Floating-Gate Differential Pair for Low-Voltage Applications

Bradley A. Minch
School of Electrical and Computer Engineering Cornell University
Ithaca, NY 14853-5401

minch@ee.cornell.edu
http://www.ee.cornell.edu/~minch

Conventional Differential Pairs

- We let V adjust itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.
- We must ensure that M_{1} and M_{2} have sufficient V_{gs} to pass I_{b} and that $V \geq V_{\text {sat }}$ to keep M_{b} saturated.
- We must ensure that M_{1} and M_{2} have sufficient V_{ds} to keep them saturated.

A Folded Floating-Gate Differential Pair

- $M_{1 \mathrm{a}}$ and $M_{1 \mathrm{~b}}$ both pass I_{1} and $M_{2 \mathrm{a}}$ and $M_{2 \mathrm{~b}}$ both pass I_{2}.
- We let V adjust itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.
- Bias transistor and the excursion of V are both folded relative to a conventional differential pair.
- Input and output voltage ranges from rail-to-rail.
- Constant differential-mode transconductance.

A Folded Floating-Gate Differential Pair

- $M_{1 \mathrm{a}}$ and $M_{1 \mathrm{~b}}$ both pass I_{1} and $M_{2 \mathrm{a}}$ and $M_{2 \mathrm{~b}}$ both pass I_{2}.
- We let V adjust itself so that $I_{1}+I_{2} \rightarrow I_{\mathrm{b}}$.
- Bias transistor and the excursion of V are both folded relative to a conventional differential pair.

A Folded Floating-Gate Differential Pair

- C_{1} sets the linear range and transconductance gain.
- C_{2} controls by how much V changes in response to changes in either V_{cm} or I_{b}.
- Input and output voltage ranges are from rail-to-rail.
- Transconductance constant with V_{cm}.

Output Currents vs V_{dm} for $I_{\mathrm{b}}=31.6 \mathrm{nA}$

Output Currents vs V_{dm} for $I_{\mathrm{b}}=1.00 \mu \mathrm{~A}$

Output Characteristics for $I_{\mathrm{b}}=31.6 \mathrm{nA}$

Output Characteristics for $I_{\mathrm{b}}=1.00 \mu \mathrm{~A}$

