A Folded Floating-Gate Differential Pair for Low-Voltage Applications

Bradley A. Minch

School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853–5401

> minch@ee.cornell.edu http://www.ee.cornell.edu/~minch

Conventional Differential Pairs

- ▶ We let *V* adjust itself so that $I_1 + I_2 \rightarrow I_b$.
- We must ensure that M_1 and M_2 have sufficient V_{gs} to pass I_b and that $V \ge V_{sat}$ to keep M_b saturated.
- We must ensure that M_1 and M_2 have sufficient V_{ds} to keep them saturated.

A Folded Floating-Gate Differential Pair

- \blacktriangleright M_{1a} and M_{1b} both pass I_1 and M_{2a} and M_{2b} both pass I_2 .
- ▶ We let *V* adjust itself so that $I_1 + I_2 \rightarrow I_b$.
- Bias transistor and the excursion of V are both *folded* relative to a conventional differential pair.
- ► Input and output voltage ranges from rail-to-rail.
- Constant differential-mode transconductance.

A Folded Floating-Gate Differential Pair

 \blacktriangleright M_{1a} and M_{1b} both pass I_1 and M_{2a} and M_{2b} both pass I_2 .

- ▶ We let *V* adjust itself so that $I_1 + I_2 \rightarrow I_b$.
- Bias transistor and the excursion of V are both *folded* relative to a conventional differential pair.

A Folded Floating-Gate Differential Pair

- \triangleright C₁ sets the linear range and transconductance gain.
- C₂ controls by how much V changes in response to changes in either $V_{\rm cm}$ or $I_{\rm b}$.
- ► Input and output voltage ranges are from rail-to-rail.
- \blacktriangleright Transconductance constant with $V_{\rm cm}$.

Output Currents vs $V_{\rm dm}$ for $I_{\rm b} = 31.6 \,\rm nA$

Output Currents vs $V_{\rm dm}$ for $I_{\rm b} = 1.00 \,\mu \rm A$

Output Characteristics for $I_b = 31.6 \text{ nA}$

Output Characteristics for $I_b = 1.00 \,\mu A$

