A Low-Voltage MOS Cascode Bias Circuit for All Current Levels

Bradley A. Minch
Mixed Analog-Digital VLSI Circuits and Systems Lab
Cornell University
Ithaca, NY 14853-5401
minch@ece.cornell.edu

May 28, 2002

CORNELL

Low-Voltage Cascodes

- Cascodes are alive and well, but we must bias them properly for lowvoltage operation.

Low-Voltage Cascodes

- Cascodes are alive and well, but we must bias them properly for lowvoltage operation.
- How can we generate $V_{c n}$ and $V_{\mathrm{c} p}$ without consuming too much headroom?

CORNELL

Simple EKV MOS Transistor Model

- We model the channel current of an $n \mathrm{MOS}$ transistor as the difference between a forward current and a reverse current,

$$
I=I_{\mathrm{F}}-I_{\mathrm{R}}
$$

whose values are given by

$$
I_{\mathrm{F}(\mathrm{R})}=\frac{W}{L} I_{\mathrm{S}} \log ^{2}\left(1+e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}(\mathrm{D})}\right) / 2 U_{\mathrm{T}}}\right),
$$

where

$$
U_{\mathrm{T}} \equiv \frac{k T}{q}, \quad I_{\mathrm{s}} \equiv \frac{2 \mu C_{\mathrm{ox}} U_{\mathrm{T}}^{2}}{\kappa}, \quad \text { and } \quad \kappa \equiv \frac{C_{\mathrm{ox}}}{C_{\mathrm{ox}}+C_{\mathrm{dep}}}
$$

- Note that $\kappa \equiv 1 / n$ and that I_{s} is approximately twice the threshold current of a square transistor.

Simple EKV MOS Transistor Model

- The model covers all regions of MOS transistor operation and is continuous and smooth.
- The expression reduces asymptotically to an exponential in weak inversion and a quadratic in strong inversion, given by

$$
I_{\mathrm{F}(\mathrm{R})} \approx\left\{\begin{array}{c}
\frac{W}{L} I_{\mathrm{s}} e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{SD}(\mathrm{D})}\right) / U_{\mathrm{T}}}, \\
V_{\mathrm{G}}<V_{\mathrm{T} 0}+\frac{V_{\mathrm{S}(\mathrm{D})}}{\kappa} \\
\frac{W}{L} \cdot \frac{\mu C_{\mathrm{ox}}}{2 \kappa}\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}(\mathrm{D})}\right)^{2}, \\
V_{\mathrm{G}}>V_{\mathrm{T} 0}+\frac{V_{\mathrm{S}(\mathrm{D})}}{\kappa}
\end{array}\right.
$$

Simple EKV MOS Transistor Model

- Note that I_{F} only depends on V_{G} and V_{S} and that I_{R} only depends on V_{G} and V_{D}.

Simple EKV MOS Transistor Model

- Note that I_{F} only depends on V_{G} and V_{S} and that I_{R} only depends on V_{G} and V_{D}.
- If $I_{\mathrm{F}} \gg I_{\mathrm{R}}$, then $I \approx I_{\mathrm{F}}$ and is nearly independent of V_{D}, which corresponds qualitatively to the saturation region of operation.
matusis

Simple EKV MOS Transistor Model

- Note that I_{F} only depends on V_{G} and V_{S} and that I_{R} only depends on V_{G} and V_{D}.
- If $I_{\mathrm{F}} \gg I_{\mathrm{R}}$, then $I \approx I_{\mathrm{F}}$ and is nearly independent of V_{D}, which corresponds qualitatively to the saturation region of operation.
- If $I_{\mathrm{F}} \approx I_{\mathrm{R}}$, then I depends on both V_{S} and V_{D} in a symmetric manner, which corresponds qualitatively to the ohmic region of operation.

Simple EKV MOS Transistor Model

- Note that I_{F} only depends on V_{G} and V_{S} and that I_{R} only depends on V_{G} and V_{D}.
- If $I_{\mathrm{F}} \gg I_{\mathrm{R}}$, then $I \approx I_{\mathrm{F}}$ and is nearly independent of V_{D}, which corresponds qualitatively to the saturation region of operation.
- If $I_{\mathrm{F}} \approx I_{\mathrm{R}}$, then I depends on both V_{S} and V_{D} in a symmetric manner, which corresponds qualitatively to the ohmic region of operation.
- We define the onset of saturation operationally in terms of an arbitrary parameter, $A \gg 1$: We say that an MOS transistor is saturated if and only if $I_{\mathrm{F}} / I_{\mathrm{R}} \geq A$.

Simple EKV MOS Transistor Model

- Note that I_{F} only depends on V_{G} and V_{S} and that I_{R} only depends on V_{G} and V_{D}.
- If $I_{\mathrm{F}} \gg I_{\mathrm{R}}$, then $I \approx I_{\mathrm{F}}$ and is nearly independent of V_{D}, which corresponds qualitatively to the saturation region of operation.
- If $I_{\mathrm{F}} \approx I_{\mathrm{R}}$, then I depends on both V_{S} and V_{D} in a symmetric manner, which corresponds qualitatively to the ohmic region of operation.
- We define the onset of saturation operationally in terms of an arbitrary parameter, $A \gg 1$: We say that an MOS transistor is saturated if and only if $I_{\mathrm{F}} / I_{\mathrm{R}} \geq A$.
- To find an explicit expression for V_{DSsat}, we write that

$$
A=\frac{I_{\mathrm{F}}}{I_{\mathrm{R}}}=\frac{\log ^{2}\left(1+e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right) / 2 U_{\mathrm{T}}}\right)}{\log ^{2}\left(1+e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}-V_{\mathrm{DSsat}}\right) / 2 U_{\mathrm{T}}}\right)}
$$

Simple EKV MOS Transistor Model

- Solving for V_{DSsat}, we find that

$$
\begin{aligned}
V_{\mathrm{DSsat}} & =\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}-2 U_{\mathrm{T}} \log \left(\left(1+e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right) / 2 U_{\mathrm{T}}}\right)^{1 / \sqrt{A}}-1\right) \\
& =2 U_{\mathrm{T}} \log \left(\frac{e^{\sqrt{I_{\mathrm{F}} /(W / L) I_{\mathrm{s}}}}}{e^{\sqrt{I_{\mathrm{F}} / A(W / L) I_{\mathrm{s}}}}-1}\right) \\
& \approx\left\{\begin{array}{l}
U_{\mathrm{T}} \log A, \quad V_{\mathrm{G}}<V_{\mathrm{T} 0}+\frac{V_{\mathrm{S}}}{\kappa} \\
\left(1-\frac{1}{\sqrt{A}}\right)\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right), \quad V_{\mathrm{G}}>V_{\mathrm{T} 0}+\frac{V_{\mathrm{S}}}{\kappa} .
\end{array}\right.
\end{aligned}
$$

MAUMISI

Simple EKV MOS Transistor Model

matrus

Low-Voltage Cascode Bias Circuit

- Assume M_{1} saturated, M_{2} either ohmic or saturated:

$$
I_{1} \approx I_{\mathrm{F} 1} \quad \text { and } \quad I_{2}=I_{\mathrm{F} 2}-I_{\mathrm{R} 2}
$$

Low-Voltage Cascode Bias Circuit

- Assume M_{1} saturated, M_{2} either ohmic or saturated:

$$
I_{1} \approx I_{\mathrm{F} 1} \text { and } I_{2}=I_{\mathrm{F} 2}-I_{\mathrm{R} 2}
$$

- V is source of M_{1} and drain of M_{2}, so we have

$$
I_{\mathrm{F} 1}=m I_{\mathrm{R} 2} \quad \Longrightarrow \quad I_{\mathrm{R} 2}=\frac{I_{\mathrm{F} 1}}{m} \approx \frac{I_{1}}{m} .
$$

Low-Voltage Cascode Bias Circuit

- Assume M_{1} saturated, M_{2} either ohmic or saturated:

$$
I_{1} \approx I_{\mathrm{F} 1} \text { and } I_{2}=I_{\mathrm{F} 2}-I_{\mathrm{R} 2}
$$

- V is source of M_{1} and drain of M_{2}, so we have

$$
I_{\mathrm{F} 1}=m I_{\mathrm{R} 2} \quad \Longrightarrow \quad I_{\mathrm{R} 2}=\frac{I_{\mathrm{F} 1}}{m} \approx \frac{I_{1}}{m} .
$$

- Solving for $I_{\mathrm{F} 2} / I_{\mathrm{R} 2}$, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+\frac{I_{2}}{I_{\mathrm{R} 2}}=1+m \frac{I_{2}}{I_{1}}=1+m\left(1+\frac{I_{\mathrm{b}}}{I_{1}}\right) .
$$

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n),
$$

independent of I_{b}.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n),
$$

independent of I_{b}.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n),
$$

independent of I_{b}.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n),
$$

independent of I_{b}.

- $\quad M_{2} \operatorname{passes}(1+1 / n) I_{\mathrm{b}}$.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n)
$$

independent of I_{b}.

- $\quad M_{2}$ passes $(1+1 / n) I_{\mathrm{b}}$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\mathrm{DSsat}}$.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n),
$$

independent of I_{b}.

- $\quad M_{2}$ passes $(1+1 / n) I_{\mathrm{b}}$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\mathrm{DS} \text { sat }}$.

CORNELL

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n)
$$

independent of I_{b}.

- $\quad M_{2}$ passes $(1+1 / n) I_{\mathrm{b}}$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\mathrm{DSsat}}$.

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n)
$$

independent of I_{b}.

- $\quad M_{2}$ passes $(1+1 / n) I_{\mathrm{b}}$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\mathrm{DS} \text { sat }}$.
- We insert a diode-connected transistor to get $V_{\mathrm{c} n}$.

CORNELL

Low-Voltage Cascode Bias Circuit

- Setting I_{1} equal to I_{b} / n, we get

$$
\frac{I_{\mathrm{F} 2}}{I_{\mathrm{R} 2}}=1+m\left(1+n \frac{I_{\mathrm{b}}}{I_{\mathrm{b}}}\right)=1+m(1+n)
$$

independent of I_{b}.

- $\quad M_{2}$ passes $(1+1 / n) I_{\mathrm{b}}$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\mathrm{DS} \text { sat }}$.
- We insert a diode-connected transistor to get $V_{\mathrm{c} n}$.

CORNELL

Experimental Drain Characteristics

CORNELL

Experimental Drain Characteristics

CORNELL

Layout Considerations for a Low-Voltage Cascode Current Mirror

- To get accurate ratios, we implement the n MOS of width m as a parallel connection of m unit transistors.

Layout Considerations for a Low-Voltage Cascode Current Mirror

- To get accurate ratios, we implement the n MOS of width m as a parallel connection of m unit transistors.
- Similarly, we implement the $p \mathrm{MOS}$ of length n as a series connection of n unit transistors.

Layout Considerations for a Low-Voltage Cascode Current Mirror

- To get accurate ratios, we implement the n MOS of width m as a parallel connection of m unit transistors.
- Similarly, we implement the $p \mathrm{MOS}$ of length n as a series connection of n unit transistors.
- If we choose m to be even, we can optimally share source/drain regions of the $n \mathrm{MOS}$ transistors in the bias circuit.

Layout Considerations for a Low-Voltage Cascode Current Mirror

- To get accurate ratios, we implement the n MOS of width m as a parallel connection of m unit transistors.
- Similarly, we implement the p MOS of length n as a series connection of n unit transistors.
- If we choose m to be even, we can optimally share source/drain regions of the $n \mathrm{MOS}$ transistors in the bias circuit.
- If we choose $n=m+1$, we have as many p MOS strips as n MOS strips.

Layout-Driven Schematics

CORNELL

Layout-Driven Schematics

CORNELL

Layout-Driven Schematics

CORNELL
CIRCUITSASYSTEMSLAB

Layout-Driven Schematics

CORNELL

