A Low-Voltage MOS Cascode Bias Circuit for All Current Levels

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Lab Cornell University Ithaca, NY 14853–5401

minch@ece.cornell.edu

May 28, 2002

Low-Voltage Cascodes

• Cascodes are alive and well, but we must bias them properly for low-voltage operation.

1

Low-Voltage Cascodes

- Cascodes are alive and well, but we must bias them properly for low-voltage operation.
- How can we generate V_{cn} and V_{cp} without consuming too much headroom?

• We model the channel current of an *n*MOS transistor as the difference between a *forward* current and a *reverse* current,

$$I=I_{\rm F}-I_{\rm R},$$

whose values are given by

$$I_{\rm F(R)} = \frac{W}{L} I_{\rm s} \log^2 \left(1 + e^{\left(\kappa (V_{\rm G} - V_{\rm T0}) - V_{\rm S(D)}\right)/2U_{\rm T}} \right),$$

where

$$U_{\rm T} \equiv \frac{kT}{q}, \quad I_{\rm s} \equiv \frac{2\mu C_{\rm ox} U_{\rm T}^2}{\kappa}, \quad \text{and} \quad \kappa \equiv \frac{C_{\rm ox}}{C_{\rm ox} + C_{\rm dep}}.$$

• Note that $\kappa \equiv 1/n$ and that I_s is approximately twice the threshold current of a square transistor.

- The model covers all regions of MOS transistor operation and is continuous and smooth.
- The expression reduces asymptotically to an exponential in weak inversion and a quadratic in strong inversion, given by

ORNELL

• Note that I_F only depends on V_G and V_S and that I_R only depends on V_G and V_D .

- Note that I_F only depends on V_G and V_S and that I_R only depends on V_G and V_D .
- If $I_F \gg I_R$, then $I \approx I_F$ and is nearly independent of V_D , which corresponds qualitatively to the *saturation* region of operation.

- Note that I_F only depends on V_G and V_S and that I_R only depends on V_G and V_D .
- If $I_F \gg I_R$, then $I \approx I_F$ and is nearly independent of V_D , which corresponds qualitatively to the *saturation* region of operation.
- If $I_{\rm F} \approx I_{\rm R}$, then *I* depends on both $V_{\rm S}$ and $V_{\rm D}$ in a symmetric manner, which corresponds qualitatively to the *ohmic* region of operation.

- Note that I_F only depends on V_G and V_S and that I_R only depends on V_G and V_D .
- If $I_F \gg I_R$, then $I \approx I_F$ and is nearly independent of V_D , which corresponds qualitatively to the *saturation* region of operation.
- If $I_{\rm F} \approx I_{\rm R}$, then *I* depends on both $V_{\rm S}$ and $V_{\rm D}$ in a symmetric manner, which corresponds qualitatively to the *ohmic* region of operation.
- We define the onset of saturation operationally in terms of an arbitrary parameter, $A \gg 1$: We say that an MOS transistor is saturated if and only if $I_F/I_R \ge A$.

- Note that I_F only depends on V_G and V_S and that I_R only depends on V_G and V_D .
- If $I_F \gg I_R$, then $I \approx I_F$ and is nearly independent of V_D , which corresponds qualitatively to the *saturation* region of operation.
- If $I_{\rm F} \approx I_{\rm R}$, then *I* depends on both $V_{\rm S}$ and $V_{\rm D}$ in a symmetric manner, which corresponds qualitatively to the *ohmic* region of operation.
- We define the onset of saturation operationally in terms of an arbitrary parameter, $A \gg 1$: We say that an MOS transistor is saturated if and only if $I_F/I_R \ge A$.
- To find an explicit expression for V_{DSsat} , we write that

$$A = \frac{I_{\rm F}}{I_{\rm R}} = \frac{\log^2 \left(1 + e^{(\kappa (V_{\rm G} - V_{\rm T0}) - V_{\rm S})/2U_{\rm T}}\right)}{\log^2 \left(1 + e^{(\kappa (V_{\rm G} - V_{\rm T0}) - V_{\rm S} - V_{\rm DSsat})/2U_{\rm T}}\right)}.$$

• Solving for V_{DSsat} , we find that

$$\begin{split} V_{\text{DSsat}} &= \kappa \left(V_{\text{G}} - V_{\text{T0}} \right) - V_{\text{S}} - 2U_{\text{T}} \log \left(\left(1 + e^{(\kappa (V_{\text{G}} - V_{\text{T0}}) - V_{\text{S}})/2U_{\text{T}}} \right)^{1/\sqrt{A}} - 1 \right) \\ &= 2U_{\text{T}} \log \left(\frac{e^{\sqrt{I_{\text{F}}/(W/L)I_{\text{S}}}} - 1}{e^{\sqrt{I_{\text{F}}/A(W/L)I_{\text{S}}}} - 1} \right) \\ &\approx \begin{cases} U_{\text{T}} \log A, & V_{\text{G}} < V_{\text{T0}} + \frac{V_{\text{S}}}{\kappa} \\ \left(1 - \frac{1}{\sqrt{A}} \right) \left(\kappa \left(V_{\text{G}} - V_{\text{T0}} \right) - V_{\text{S}} \right), & V_{\text{G}} > V_{\text{T0}} + \frac{V_{\text{S}}}{\kappa}. \end{cases} \end{split}$$

• Assume M_1 saturated, M_2 either ohmic or saturated:

 $I_1 \approx I_{\text{F1}}$ and $I_2 = I_{\text{F2}} - I_{\text{R2}}$.

• Assume M_1 saturated, M_2 either ohmic or saturated:

 $I_1 \approx I_{\text{F1}}$ and $I_2 = I_{\text{F2}} - I_{\text{R2}}$.

• V is source of M_1 and drain of M_2 , so we have

$$I_{\mathrm{F1}} = m I_{\mathrm{R2}} \implies I_{\mathrm{R2}} = \frac{I_{\mathrm{F1}}}{m} \approx \frac{I_1}{m}.$$

• Assume M_1 saturated, M_2 either ohmic or saturated:

 $I_1 \approx I_{\text{F1}}$ and $I_2 = I_{\text{F2}} - I_{\text{R2}}$.

• V is source of M_1 and drain of M_2 , so we have

$$I_{\mathrm{F1}} = m I_{\mathrm{R2}} \implies I_{\mathrm{R2}} = \frac{I_{\mathrm{F1}}}{m} \approx \frac{I_1}{m}.$$

• Solving for $I_{\rm F2}/I_{\rm R2}$, we get

ORNELL

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + \frac{I_2}{I_{\rm R2}} = 1 + m\frac{I_2}{I_1} = 1 + m\left(1 + \frac{I_{\rm b}}{I_1}\right).$$

3

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m\left(1 + n\frac{I_{\rm b}}{I_{\rm b}}\right) = 1 + m\left(1 + n\right),$$

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m\left(1 + n\frac{I_{\rm b}}{I_{\rm b}}\right) = 1 + m\left(1 + n\right),$$

independent of $I_{\rm b}$.

CORNELL

3

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m\left(1 + n\frac{I_{\rm b}}{I_{\rm b}}\right) = 1 + m\left(1 + n\right),$$

independent of $I_{\rm b}$.

CORNELL

3

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m\left(1 + n\frac{I_{\rm b}}{I_{\rm b}}\right) = 1 + m\left(1 + n\right),$$

independent of $I_{\rm b}$.

• M_2 passes $(1 + 1/n) I_b$.

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m \left(1 + n \frac{I_{\rm b}}{I_{\rm b}} \right) = 1 + m \left(1 + n \right),$$

- M_2 passes $(1 + 1/n) I_b$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\text{DSsat}}$.

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m \left(1 + n \frac{I_{\rm b}}{I_{\rm b}} \right) = 1 + m \left(1 + n \right),$$

- M_2 passes $(1 + 1/n) I_b$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\text{DSsat}}$.

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m \left(1 + n \frac{I_{\rm b}}{I_{\rm b}} \right) = 1 + m \left(1 + n \right),$$

- M_2 passes $(1 + 1/n) I_b$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\text{DSsat}}$.

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m \left(1 + n \frac{I_{\rm b}}{I_{\rm b}} \right) = 1 + m \left(1 + n \right),$$

- M_2 passes $(1 + 1/n) I_b$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\text{DSsat}}$.
- We insert a diode-connected transistor to get V_{cn} .

• Setting I_1 equal to I_b/n , we get

$$\frac{I_{\rm F2}}{I_{\rm R2}} = 1 + m \left(1 + n \frac{I_{\rm b}}{I_{\rm b}} \right) = 1 + m \left(1 + n \right),$$

- M_2 passes $(1 + 1/n) I_b$.
- If $m \gg 1$ and $n \gg 1$, we can make $V \approx V_{\text{DSsat}}$.
- We insert a diode-connected transistor to get V_{cn} .

Experimental Drain Characteristics

Experimental Drain Characteristics

• To get accurate ratios, we implement the *n*MOS of width *m* as a parallel connection of *m* unit transistors.

- To get accurate ratios, we implement the *n*MOS of width *m* as a parallel connection of *m* unit transistors.
- Similarly, we implement the *p*MOS of length *n* as a series connection of *n* unit transistors.

ORNELL

- To get accurate ratios, we implement the *n*MOS of width *m* as a parallel connection of *m* unit transistors.
- Similarly, we implement the *p*MOS of length *n* as a series connection of *n* unit transistors.
- If we choose *m* to be even, we can optimally share source/drain regions of the *n*MOS transistors in the bias circuit.

- To get accurate ratios, we implement the *n*MOS of width *m* as a parallel connection of *m* unit transistors.
- Similarly, we implement the *p*MOS of length *n* as a series connection of *n* unit transistors.
- If we choose *m* to be even, we can optimally share source/drain regions of the *n*MOS transistors in the bias circuit.
- If we choose n = m + 1, we have as many *p*MOS strips as *n*MOS strips.

ORNELI

5

