Synthesis of Multiple-Input Translinear Element Networks

Bradley A. Minch[†], Paul Hasler, and Chris Diorio

†Laboratory of Analogical Information Processing School of Electrical Engineering Cornell University minch@ee.cornell.edu http://www.ee.cornell.edu/~minch

The Ideal Multiple-Input Translinear Element

A *K*-input *multiple-input translinear element* (MITE) produces an output current that is exponential in a weighted sum of its *K* input voltages.

$$I = \lambda I_{s} \exp \left[\sum_{k=1}^{K} \frac{w_{k} V_{k}}{U_{T}} \right]$$

$$V_1 \overset{w_1}{\overset{w_2}{\overset{}{\circ}}} | V_2 \overset{\lambda}{\overset{}{\circ}} | V_K \overset{\iota}{\overset{}{\circ}} |$$

- *I* is the MITE's output current
- V_k is the MITE's kth input voltage
- w_k is a dimensionless positive weight that scales V_k proportionally.
- $I_{\rm s}$ is a pre-exponential scaling current
- λ is a dimensionless factor that scales I_s proportionally (e.g., a geometric factor)
- $U_{\rm T}$ is the thrermal voltage, $\frac{kT}{q}$.

- ➤ We assume that the voltage inputs draw a negligible amount of current at DC.
- ➤ We assume that we have the ability to control the values of the input weights proportionally, so we can make accurate weight ratios.
- ► If we have an integral number of inputs, each with the same weight, w, then we omit the w associated with each symbol in the schematic for clarity.
- ► The MITE has *K trans*conductances, each of which is *linear* in the output current, *I*:

$$g_k = \frac{\partial I}{\partial V_k} = \frac{w_k}{U_T} \lambda I_s \exp \left[\sum_{k=1}^K \frac{w_k V_k}{U_T} \right] = \frac{w_k}{U_T} I$$

Using MITEs, we can construct both low-voltage translinear circuits and log-domain filters.

MITE Implementations

- ➤ We can implement the weighted voltage summation either with a resistive voltage divider or with a capacitive voltage divider.
 - For resistive voltage dividers, the weights are proportional to the coupling conductance.
 - For capacitive voltage dividers, the weights are proportional to the coupling capacitances.

- ➤ We can implement the exponential current-voltage relationship either with a bipolar transistor or with a subthreshold MOS transistor.
- For each FGMOS MITE shown, the floating-gate charge provides a nonvolatile, weight on the output current that we can use either to compensate for mismatch or to implement adaptive circuits.

Three Basic MITE Circuit Configurations

Voltage-In, Current-Out Current-In, Voltage-Out Voltage-In, Voltage-Out

$$I_i$$
 cause
$$I_i \leftarrow \text{cause}$$

$$V_i \leftarrow V_i$$

$$I_n \propto \exp\left[\frac{w_{ni}V_i + w_{nk}V_k + \dots}{U_T}\right]$$

 $\Rightarrow \left| I_n \propto \exp \left| \frac{w_{ni} V_i}{I_{I_-}} \right| \exp \left| \frac{w_{nk} V_k}{I_I} \right| \right|$

$$I_i \propto \exp\left[\frac{w_{ii}V_i + \dots}{U_{\mathrm{T}}}\right]$$

$$\Rightarrow V_i = \frac{U_{\mathrm{T}}}{w_{ii}} \log I_i - \dots$$

$$I_i \propto \exp\left[\frac{w_{ii} V_i + w_{ij} V_j + \dots}{U_{\mathrm{T}}}\right]$$

$$\Rightarrow V_i = \frac{U_T}{w_{ii}} \log I_i - \frac{w_{ij}}{w_{ii}} V_j - \dots$$

MITE Networks: Low-Voltage Translinear Circuits

Product-of-Power-Law Circuits

$$I_n \propto \exp\left[\frac{w_{ni}V_i}{U_{\rm T}}\right] \exp\left[\frac{w_{nk}V_k}{U_{\rm T}}\right]$$

$$\Rightarrow I_{n} \propto \exp \left[\frac{w_{ni}}{U_{\text{T}}} \left(\frac{U_{\text{T}}}{w_{ii}} \log I_{i} - \ldots \right) \right] \exp \left[\frac{w_{nk}}{U_{\text{T}}} \left(\frac{U_{\text{T}}}{w_{kk}} \log I_{k} - \ldots \right) \right] \qquad \Rightarrow I_{n} \propto \exp \left[\frac{w_{ni}}{U_{\text{T}}} \left(\frac{U_{\text{T}}}{w_{ii}} \log I_{i} - \frac{w_{ij}}{w_{ii}} \left(\frac{U_{\text{T}}}{w_{jj}} \log I_{j} - \ldots \right) \right) \right]$$

$$\Rightarrow I_n \propto \exp\left[\frac{\mathcal{U}_{\mathrm{T}}}{\mathcal{U}_{\mathrm{T}}} \frac{w_{ni}}{w_{ii}} \log I_i\right] \exp\left[\frac{\mathcal{U}_{\mathrm{T}}}{\mathcal{U}_{\mathrm{T}}} \frac{w_{nk}}{w_{kk}} \log I_k\right]$$

$$\Rightarrow I_n \propto I_i^{\frac{w_{ni}}{w_{ii}}} \times I_k^{\frac{w_{nk}}{w_{kk}}}$$

Quotient-of-Power-Law Circuits

ABCs of MITE Network Synthesis

1. Acquire a set of Translinear-Loop Equations

- ► Begin with a suitable relationship to implement using MITE networks.
- \triangleright Represent the variables in terms of the ratio of positive signal currents to a unit current, I_{11} .
- From the original relationship and the signal representations, derive a set of TL loop equations.

2. Begin the Network

Begin with a TL loop equation: $\prod_{n \in "CW"} I_n^{k_n} = \prod_{n \in "CCW"} I_n^{k_n}$

$$\prod_{n \in "CW"} I_n^{k_n} = \prod_{n \in "CCW"} I_n^{k_n}$$

 \triangleright Pick a current from each set (e.g., I_i from "CW" and I_i from "CCW"), make a new MITE for each, make a new node in the circuit, and couple it into MITE Q_i through k_i unit inputs and into MITE Q_i through k_i unit inputs. If k_i and k_i have a factor in common, they can both be divided by that factor in determining the number of unit inputs.

$$j$$
 $k_i:k_j$
 i

ABCs of MITE Network Synthesis

3. Build the Network

For each additional current (e.g., I_k from "CW"), make a new MITE and connect it to an existing MITE whose current is from the opposite set (e.g., I_j from "CCW"), by making a new node and coupling it into MITE Q_k through k_j unit inputs and into MITE Q_j through k_k unit inputs. If k_j and k_k have a factor in common, they can both be divided by that factor in determining the number of unit inputs.

4. Balance the Network

Suppose that the largest MITE fan-in is K. Add a sufficient number of grounded inputs to all MITEs, so they each have a fan-in of K.

ABCs of MITE Network Synthesis

5. Bias the Network

▶ Bias the MITE network by diode connecting those MITEs whose currents are inputs.

6. Complete the Network

Complete the MITE network by connecting all of the grounded inputs to the collector of one of the diode-connected MITEs, avoiding the creation of feedback loops.

2. Beginning the network

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

3. Building the network

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

3. Building the network (con't.)

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

3. Building the network (con't.)

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

3. Building the network (con't.)

I_1 Q_1 Q_2 Q_2 Q_3 Q_5 Q_5 Q_5 Q_5 Q_7 Q_8 Q_8 Q_8 Q_9 Q_9

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

4. Balancing the network

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

5. Biasing the network

$$I_6 = \frac{I_1^{\frac{1}{2}} I_2^{\frac{3}{2}} I_3^2}{I_4^2 I_5}$$

6. Completing the network

Synthesis of a Cascade MITE Network

2. Beginning the network

3. Building the network (con't.)

$$\underbrace{I_{1}I_{2}^{3}I_{3}^{4}}_{\text{"CW"}} = \underbrace{I_{4}^{4}I_{5}^{2}I_{6}^{2}}_{\text{"CCW"}}$$

 $I_1 I_2^3 I_3^4 = I_4^4 I_5^2 I_6^2$

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}}$$

3. Building the network

3. Building the network (con't.)

$$I_1 I_2^3 I_3^4 = I_4^4 I_5^2 I_6^2$$
"CCW"

Synthesis of a Cascade MITE Network

3. Building the network (con't.)

$$\underbrace{I_1 I_2^3 I_3^4}_{\text{"CW"}} = \underbrace{I_4^4 I_5^2 I_6^2}_{\text{"CCW"}} \qquad 2 \bigcirc \xrightarrow{4:3} \xrightarrow{4} \xrightarrow{1:1} \xrightarrow{3} \xrightarrow{1:2} \xrightarrow{5} \xrightarrow{2:1} \xrightarrow{1} \xrightarrow{1:2} \bigcirc \bigcirc$$

4. Balancing the network

5. Biasing the network

$$I_6 = \frac{I_1^{\frac{1}{2}} I_2^{\frac{3}{2}} I_3^2}{I_4^2 I_5} \qquad 2 \bigcirc$$

6. Completing the network

MITE Log-Domain Filters?? Come to paper 83.7...

$$H(s) = \frac{I_{\text{out}}(s)}{I_{\text{in}}(s)} = \frac{1}{1 + \tau_1 s + \tau_1 \tau_2 s^2} = \frac{1}{1 + \frac{\tau s}{Q} + (\tau s)^2}$$

$$\tau_1 = \frac{CU_{\text{T}}}{wI_{\text{t1}}} \quad \tau_2 = \frac{CU_{\text{T}}}{wI_{\text{t2}}} \quad \tau = \sqrt{\tau \tau_2} \quad Q = \sqrt{\tau_1}$$

$$\frac{10}{20} \quad \frac{10}{20} \quad \frac{10}{20}$$

Frequency (Hz)

Frequency (Hz)