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The Double-Gate MOS Transistor

The double-gate MOS transistor is perhaps the most
promising device structure for scaling L down to 20 nm.
Similar to fully-depleted SOI structure, but back gate
provides better control over the potential in the sili-
con body, reducing short-channel effects.
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In principle, we can use VF and VB independently for
signal or biasing inputs fi new topologies possible!
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Conventional MOS Differential Pairs

The differential pair is widely used as an input stage for
operational amplifiers, comparators, mixers, and many
other circuits.

This circuit does not function well with a low power-
supply voltage, because transistor Mb shuts off if V1
and V2 get too close to the appropriate rail.
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Conventional MOS Differential Pairs

I1 = ¶(g(V1, -V)) and I2 = ¶(g(V2, -V)), where ¶ is
expansive  and g is quasilinear.

V adjusts itself so that I1 + I2 Æ Ib.

Differential-pair intuition: 
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Capacitive Voltage Dividers

The voltage on the middle node is a weighted sum of
the two input voltages.
If node V is really floating, then the inputs couple
into the floating node all the way down to DC!
The charge Q linearly offsets the V.  The charge can
be adjusted either optically or electronically.
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Floating-Gate MOS Transitors

The capacitors C1 and C2 are called control gates.

If floating-gate voltage, V, is a weighted sum of the
control-gate voltages.

The floating-gate charge, Q, can be thought of as
giving us a programmable threshold voltage.
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An Inverted Floating-Gate Differential Pair
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I1 = ¶(g(V1, V)) and I2 = ¶(g(V2, V)), where ¶ is
expansive  and g is quasilinear.

V adjusts itself so that I1 + I2 Æ Ib.

Differential-pair intuition: 



An Inverted Floating-Gate Differential Pair
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Sign reversal permits us to invert V w.r.t. the normal diffpair. 

I1 = ¶(g(V1, V)) and I2 = ¶(g(V2, V)), where ¶ is
expansive  and g is quasilinear.

V adjusts itself so that I1 + I2 Æ Ib.

Differential-pair intuition: 



An Inverted Floating-Gate Differential Pair
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M1b and M2b provide mirror copies of I1 and I2. 

I1 = ¶(g(V1, V)) and I2 = ¶(g(V2, V)), where ¶ is
expansive  and g is quasilinear.

V adjusts itself so that I1 + I2 Æ Ib.

Differential-pair intuition: 



An Inverted Floating-Gate Differential Pair
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M1c and M2c mitigate the Cgd’s of transistors M1b and M2b. 

I1 = ¶(g(V1, V)) and I2 = ¶(g(V2, V)), where ¶ is
expansive  and g is quasilinear.

V adjusts itself so that I1 + I2 Æ Ib.

Differential-pair intuition: 
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An Inverted Floating-Gate Differential Pair

Input and output voltage ranges are from rail-to-rail.

C1 sets the linear range and transconductance gain.

C2 controls by how much V changes in response to
changes in either Vcm or Ib.

Transconductance gain nearly constant with Vcm.
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A Double-Gate MOS Inverted Differential Pair?

Requirements for DGMOS version to be feasible:
• Independent front and back gates
• V1 and V affect I1 in a similar manner
• V2 and V affect I2 in a similar manner
• V transconductance larger than V1 and V2

• V1, V2, and V ≥ ground

?


