

Our research presently revolves around two major themes:

- Devising new circuit techniques to facilitate the development of low-power/low-voltage analog and mixed-signal systems.
- Developing structured synthesis methodologies that will shorten the design time for complex analog and mixed-signal systems.

Low-Voltage Topologies for Analog and Mixed-Signal Circuits in Nanoscale CMOS

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Laboratory School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853–5401

> minch@ece.cornell.edu http://people.ece.cornell.edu/minch

- ► The double-gate MOS transistor is perhaps the most promising device structure for scaling *L* down to 20 nm.
- Similar to fully-depleted SOI structure, but back gate provides better control over the potential in the silicon body, reducing short-channel effects.
- ► In principle, we can use V_F and V_B independently for signal or biasing inputs \Rightarrow new topologies possible!

Conventional MOS Differential Pairs

- The differential pair is widely used as an input stage for operational amplifiers, comparators, mixers, and many other circuits.
- This circuit does not function well with a low powersupply voltage, because transistor M_b shuts off if V_1 and V_2 get too close to the appropriate rail.

Conventional MOS Differential Pairs

Differential-pair intuition:

► $I_1 = f(g(V_1, -V))$ and $I_2 = f(g(V_2, -V))$, where *f* is expansive and *g* is quasilinear.

► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Capacitive Voltage Dividers

- The voltage on the middle node is a weighted sum of the two input voltages.
- ► If node *V* is really floating, then the inputs couple into the floating node all the way down to DC!
- ► The charge *Q* linearly offsets the *V*. The charge can be adjusted either optically or electronically.

Floating-Gate MOS Transitors

- ▶ The capacitors C_1 and C_2 are called *control gates*.
- ► If floating-gate voltage, *V*, is a weighted sum of the control-gate voltages.
- ► The floating-gate charge, *Q*, can be thought of as giving us a programmable threshold voltage.

Differential-pair intuition:

► $I_1 = f(g(V_1, V))$ and $I_2 = f(g(V_2, V))$, where *f* is expansive and *g* is quasilinear.

► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Differential-pair intuition:

- ► $I_1 = f(g(V_1, V))$ and $I_2 = f(g(V_2, V))$, where *f* is expansive and *g* is quasilinear.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

Sign reversal permits us to *invert V* w.r.t. the normal diffpair.

Differential-pair intuition:

- ► $I_1 = f(g(V_1, V))$ and $I_2 = f(g(V_2, V))$, where *f* is expansive and *g* is quasilinear.
- ► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

 M_{1b} and M_{2b} provide mirror copies of I_1 and I_2 .

Differential-pair intuition:

► $I_1 = f(g(V_1, V))$ and $I_2 = f(g(V_2, V))$, where *f* is expansive and *g* is quasilinear.

► *V* adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

 M_{1c} and M_{2c} mitigate the C_{gd} 's of transistors M_{1b} and M_{2b} .

- \triangleright C_1 sets the linear range and transconductance gain.
- C_2 controls by how much V changes in response to changes in either $V_{\rm cm}$ or $I_{\rm b}$.
- Input and output voltage ranges are from rail-to-rail.
- \blacktriangleright Transconductance gain nearly constant with $V_{\rm cm}$.

Output Currents vs. V_{dm} ($I_b = 316 \text{ pA}$)

Output Currents vs. $V_{\rm dm} (I_{\rm b} = 31.6 \,\mu {\rm A})$

Transconducance Gain vs. $V_{\rm cm}$

Common-Mode Output Current vs. V_{out}

A Double-Gate MOS Inverted Differential Pair?

- Requirements for DGMOS version to be feasible:
 - Independent front and back gates
 - V_1 and V affect I_1 in a similar manner
 - V_2 and V affect I_2 in a similar manner
 - V transconductance larger than V_1 and V_2
 - V_1, V_2 , and $V \ge$ ground

