# Static and Dynamic Translinear Circuits 

Bradley A. Minch<br>Mixed Analog-Digital VLSI Circuits and Systems Lab Cornell University<br>Ithaca, NY 14853-5401<br>minch@ece.cornell.edu

March 15, 2004

CORNELL

## Translinear Devices and Circuits: What's In A Name?

A translinear element is one whose incremental transconductance gain is linear in its output current

$$
I=\lambda I_{\mathrm{s}} e^{V / U_{\mathrm{T}}} \Longrightarrow g_{\mathrm{m}}=\frac{\partial I}{\partial V}=\underbrace{\lambda I_{\mathrm{s}} e^{V / U_{\mathrm{T}}}}_{I} \cdot \frac{1}{U_{\mathrm{T}}}=\frac{I}{U_{\mathrm{T}}}
$$



The word translinear is also meant to convey the notion of bridging the gap between the familiar world of linear circuit design and the largely uncharted territory of nonlinear circuit design.

## The Translinear Principle

In a closed loop of junctions comprising an equal number of clockwise and counterclockwise elements, the product of the current densities flowing through the counterclockwise elements is equal to the product of the current densities flowing through the clockwise elements.

$$
\prod_{n \in \mathrm{CW}} \frac{I_{n}}{\lambda_{n}}=\prod_{n \in \mathrm{CCW}} \frac{I_{n}}{\lambda_{n}}
$$



CORNELL

## The Ideal Multiple-Input Translinear Element

The ideal multiple-input translinear element (MITE) produces an output current given by

$$
I=\lambda I_{\mathrm{s}} e^{\left(w_{1} V_{1}+\cdots+w_{K} V_{K}\right) / U_{\mathrm{T}}}
$$

where
$I_{\mathrm{s}} \quad$ pre-exponential scaling current
$\lambda$ dimensionless constant scaling $I_{\mathrm{s}}$ proportionally
$V_{k} \quad k$ th control-gate voltage

$w_{k} \quad$ dimensionless positive weight scaling $V_{k}$
$U_{\mathrm{T}} \quad$ thermal voltage, $k T / q$.

## Practical Floating-Gate MITE Implementations




CORNELL

Basic MITE Circuit Stages

$I_{n} \propto e^{w_{n i} V_{i} / U_{\mathrm{T}}} e^{w_{n k} V_{k} / U_{\mathrm{T}}}$
matusis

Basic MITE Circuit Stages


$$
I_{n} \propto e^{w_{n i} V_{i} / U_{\mathrm{T}}} e^{w_{n k} V_{k} / U_{\mathrm{T}}} \quad V_{i}=\frac{U_{\mathrm{T}}}{w_{i i}} \log I_{i}-\cdots
$$

## Basic MITE Circuit Stages



$$
I_{n} \propto e^{w_{n i} V_{i} / U_{\mathrm{T}}} e^{w_{n k} V_{k} / U_{\mathrm{T}}} \quad V_{i}=\frac{U_{\mathrm{T}}}{w_{i i}} \log I_{i}-\cdots \quad V_{i}=\frac{U_{\mathrm{T}}}{w_{i i}} \log I_{i}-\frac{w_{i j}}{w_{i i}} V_{j}-\cdots
$$

## Elementary MITE Networks

$$
\begin{aligned}
& I_{n} \propto e^{w_{n i} V_{i} / U_{\mathrm{T}}} e^{w_{n k} V_{k} / U_{\mathrm{T}}} \\
& \Longrightarrow I_{n} \propto \exp \left(\frac{w_{n i}}{U_{\mathrm{T}}}\left(\frac{U_{\mathrm{T}}}{w_{i i}} \log I_{i}-\cdots\right)\right) \\
& \times \exp \left(\frac{w_{n k}}{U_{\mathrm{T}}}\left(\frac{U_{\mathrm{T}}}{w_{k k}} \log I_{k}-\cdots\right)\right) \\
& \Longrightarrow I_{n} \propto e^{\left(w_{n i} / w_{i i}\right) \log I_{i}} e^{\left(w_{n k} / w_{k k}\right) \log I_{k}} \\
& \Longrightarrow I_{n} \propto I_{i}^{w_{n i} / w_{i i}} \times I_{k}^{w_{n k} / w_{k k}}
\end{aligned}
$$



CORNELL

## Elementary MITE Networks

$$
\begin{gathered}
I_{n} \propto e^{w_{n i} V_{i} / U_{\mathrm{T}}} \\
\Longrightarrow I_{n} \propto \exp \left(\frac { w _ { n i } } { U _ { \mathrm { T } } } \left(\frac{U_{\mathrm{T}}}{w_{i i}} \log I_{i}\right.\right. \\
\left.\left.-\frac{w_{i j}}{w_{i i}}\left(\frac{U_{\mathrm{T}}}{w_{j j}} \log I_{j}-\cdots\right)-\cdots\right)\right) \\
\Longrightarrow I_{n} \propto e^{\left(w_{n i} / w_{i i}\right) \log I_{i}} e^{-\left(w_{n i} w_{i j} / w_{i i} w_{j j}\right) \log I_{j}} \\
\Longrightarrow I_{n} \propto \frac{I_{i}^{w_{n i} / w_{i i}}}{I_{j}^{w_{n i} w_{i j} / w_{i j} w_{j j}}}
\end{gathered}
$$

CORNELL

## Static MITE Network Synthesis: Square-Root Circuit

Synthesize a square-root circuit described by

$$
z=\sqrt{x}, \quad \text { where } \quad x>0
$$

matusis

## Static MITE Network Synthesis: Square-Root Circuit

Synthesize a square-root circuit described by

$$
z=\sqrt{x}, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

## Static MITE Network Synthesis: Square-Root Circuit

Synthesize a square-root circuit described by

$$
z=\sqrt{x}, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

Substituting these into the relationship, we obtain

$$
\frac{I_{z}}{I_{1}}=\sqrt{\frac{I_{x}}{I_{1}}}
$$

## Static MITE Network Synthesis: Square-Root Circuit

Synthesize a square-root circuit described by

$$
z=\sqrt{x}, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

Substituting these into the relationship, we obtain

$$
\frac{I_{z}}{I_{1}}=\sqrt{\frac{I_{x}}{I_{1}}} \quad \Longrightarrow \quad I_{z}=\sqrt{I_{x} I_{1}}
$$

## Static MITE Network Synthesis: Square-Root Circuit

Synthesize a square-root circuit described by

$$
z=\sqrt{x}, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

Substituting these into the relationship, we obtain

$$
\frac{I_{z}}{I_{1}}=\sqrt{\frac{I_{x}}{I_{1}}} \quad \Longrightarrow \quad I_{z}=\sqrt{I_{x} I_{1}} \quad \Longrightarrow \quad I_{z}^{2}=I_{x} I_{1}
$$

Cornell

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$
matusis

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Square-Root Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

## Experimental Measurements: Square-Root Circuit



CORNELL

## Static MITE Network Synthesis: Squaring Circuit

Synthesize a squaring circuit described by

$$
x=z^{2}, \quad \text { where } \quad x>0
$$

## Static MITE Network Synthesis: Squaring Circuit

Synthesize a squaring circuit described by

$$
x=z^{2}, \quad \text { where } \quad x>0 .
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

## Static MITE Network Synthesis: Squaring Circuit

Synthesize a squaring circuit described by

$$
x=z^{2}, \quad \text { where } \quad x>0 .
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

Substituting these into the relationship, we obtain

$$
\frac{I_{x}}{I_{1}}=\left(\frac{I_{z}}{I_{1}}\right)^{2}
$$

CORNELL

## Static MITE Network Synthesis: Squaring Circuit

Synthesize a squaring circuit described by

$$
x=z^{2}, \quad \text { where } \quad x>0 .
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}} .
$$

Substituting these into the relationship, we obtain

$$
\frac{I_{x}}{I_{1}}=\left(\frac{I_{z}}{I_{1}}\right)^{2} \quad \Longrightarrow \quad I_{z}^{2}=I_{x} I_{1}
$$

CORNELL

Static MITE Network Synthesis: Squaring Circuit TLP: $I_{z}^{2}=I_{x} I_{1}$
matins

## Static MITE Network Synthesis: Squaring Circuit

TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL

Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Static MITE Network Synthesis: Squaring Circuit
TLP: $I_{z}^{2}=I_{x} I_{1}$


CORNELL
matusis

Experimental Measurements: Squaring Circuit


CORNELL

Experimental Measurements: Squaring Circuit


CORNELL

Static MITE Network Synthesis: Consolidation

matusis

Static MITE Network Synthesis: Consolidation

matusu

Static MITE Network Synthesis: Vector Magnitude
Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

## Static MITE Network Synthesis: Vector Magnitude

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

## Static MITE Network Synthesis: Vector Magnitude

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}}
$$

## Static MITE Network Synthesis: Vector Magnitude

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow \quad I_{r}^{2}=I_{x}^{2}+I_{y}^{2}
$$

CORNELL

## Static MITE Network Synthesis: Vector Magnitude

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\frac{I_{x}^{2}}{I_{r}}+\frac{I_{y}^{2}}{I_{r}}
$$

## Static MITE Network Synthesis: Vector Magnitude

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\underbrace{\frac{I_{x}^{2}}{I_{r}}}_{I_{r 1}}+\underbrace{\frac{I_{y}^{2}}{I_{r}}}_{I_{r 2}}
$$

CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$

matins

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$



CORNELL
matusis

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$



CORNELL
matusis

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$



CORNELL
matusis

Static MITE Network Synthesis: Vector Magnitude

$$
\mathrm{TLP}: \begin{array}{ll} 
& I_{r 1} I_{r}=I_{x}^{2} \quad \mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL
matusis

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL
matusis

Static MITE Network Synthesis: Vector Magnitude

$$
\mathrm{TLP}: \begin{array}{ll} 
& I_{r 1} I_{r}=I_{x}^{2} \quad \mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\mathrm{TLP}: \begin{array}{ll} 
& I_{r 1} I_{r}=I_{x}^{2} \quad \mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\mathrm{TLP}: \begin{array}{ll} 
& I_{r 1} I_{r}=I_{x}^{2} \quad \mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\mathrm{TLP}: \begin{array}{ll} 
& I_{r 1} I_{r}=I_{x}^{2} \quad \mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$



CORNELL

Static MITE Network Synthesis: Vector Magnitude

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$



CORNELL

Dynamic MITE Network Synthesis: Output Structures

matins

Dynamic MITE Network Synthesis: First-Order LPF
Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

matusis

## Dynamic MITE Network Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

## Dynamic MITE Network Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

Substituting these into the ODE, we obtain

$$
\tau \frac{d}{d t}\left(\frac{I_{y}}{I_{1}}\right)+\frac{I_{y}}{I_{1}}=\frac{I_{x}}{I_{1}}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

Substituting these into the ODE, we obtain

$$
\tau \frac{d}{d t}\left(\frac{I_{y}}{I_{1}}\right)+\frac{I_{y}}{I_{1}}=\frac{I_{x}}{I_{1}} \quad \Longrightarrow \quad \tau \frac{d I_{y}}{d t}+I_{y}=I_{x}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x}
$$

CORNELL

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\frac{w \tau}{C U_{\mathrm{T}}} \cdot C \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \Longrightarrow-\underbrace{\frac{w \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow-\underbrace{\frac{w \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}}
\end{gathered}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\underbrace{\frac{w \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad I_{c}-I_{\tau}=\frac{I_{\tau} I_{x}}{I_{y}} .
\end{gathered}
$$

## Dynamic MITE Network Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, $V_{y}$. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\underbrace{\frac{w \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad I_{c}-I_{\tau}=\underbrace{\frac{I_{\tau} I_{x}}{I_{y}}}_{I_{p}} .
\end{gathered}
$$

Dynamic MITE Network Synthesis: First-Order LPF $\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$
matins

Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad$ KCL: $I_{p}+I_{c}=I_{\tau}$

matusis

Dynamic MITE Network Synthesis: First-Order LPF
TLP: $I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$

matusis

Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


CORNELL

Dynamic MITE Network Synthesis: First-Order LPF
TLP: $I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
TLP: $I_{p} I_{y}=I_{x} I_{\tau} \quad$ KCL: $I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


Dynamic MITE Network Synthesis: First-Order LPF
$\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{p}+I_{c}=I_{\tau}$


CORNELL

Dynamic MITE Network Synthesis: First-Order LPF
TLP: $I_{p} I_{y}=I_{x} I_{\tau} \quad$ KCL: $I_{p}+I_{c}=I_{\tau}$


CORNELL

## Dynamic MITE Network Synthesis: Second-Order LPF

Synthesize a second-order low-pass filter described by

$$
\tau^{2} \frac{d^{2} y}{d t^{2}}+\frac{\tau}{Q} \cdot \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

matrus

## Dynamic MITE Network Synthesis: Second-Order LPF

Synthesize a second-order low-pass filter described by

$$
\tau^{2} \frac{d^{2} y}{d t^{2}}+\frac{\tau}{Q} \cdot \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We can decompose this second-order ODE into two coupled first-order ODEs as

$$
\tau \frac{d}{d t}\left(\tau \frac{d y}{d t}+\frac{y}{Q}\right)+y=x
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

Synthesize a second-order low-pass filter described by

$$
\tau^{2} \frac{d^{2} y}{d t^{2}}+\frac{\tau}{Q} \cdot \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We can decompose this second-order ODE into two coupled first-order ODEs as

$$
\tau \frac{d}{d t}(\underbrace{\tau \frac{d y}{d t}+\frac{y}{Q}}_{z})+y=x
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

Synthesize a second-order low-pass filter described by

$$
\tau^{2} \frac{d^{2} y}{d t^{2}}+\frac{\tau}{Q} \cdot \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We can decompose this second-order ODE into two coupled first-order ODEs as

$$
\tau \frac{d}{d t}(\underbrace{\tau \frac{d y}{d t}+\frac{y}{Q}}_{z})+y=x \quad \Longrightarrow \quad\left\{\begin{aligned}
\tau \frac{d z}{d t} & =x-y \\
\tau \frac{d y}{d t} & =z-\frac{y}{Q}
\end{aligned}\right.
$$

CORNELL

## Dynamic MITE Network Synthesis: Second-Order LPF

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}}
$$

CORNELL

## Dynamic MITE Network Synthesis: Second-Order LPF

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}}
$$

Substituting these into the pair of ODEs, we obtain

$$
\left\{\begin{aligned}
\tau \frac{d}{d t}\left(\frac{I_{z}}{I_{1}}\right) & =\frac{I_{x}}{I_{1}}-\frac{I_{y}}{I_{1}} \\
\tau \frac{d}{d t}\left(\frac{I_{y}}{I_{1}}\right) & =\frac{I_{z}}{I_{1}}-\frac{1}{Q} \cdot \frac{I_{y}}{I_{1}}
\end{aligned}\right.
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad z \equiv \frac{I_{z}}{I_{1}}
$$

Substituting these into the pair of ODEs, we obtain

$$
\left\{\begin{array} { r l } 
{ \tau \frac { d } { d t } ( \frac { I _ { z } } { I _ { 1 } } ) } & { = \frac { I _ { x } } { I _ { 1 } } - \frac { I _ { y } } { I _ { 1 } } } \\
{ \tau \frac { d } { d t } ( \frac { I _ { y } } { I _ { 1 } } ) } & { = \frac { I _ { z } } { I _ { 1 } } - \frac { 1 } { Q } \cdot \frac { I _ { y } } { I _ { 1 } } }
\end{array} \Longrightarrow \left\{\begin{array}{rl}
\tau \frac{d I_{z}}{d t} & =I_{x}-I_{y} \\
\tau \frac{d I_{y}}{d t} & =I_{z}-\frac{I_{y}}{Q}
\end{array}\right.\right.
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

To implement the time derivatives, we introduce log-compressed voltage state variables, $V_{z}$ and $V_{y}$. Using the chain rule, we can express the preceding pair of equations as

$$
\left\{\begin{aligned}
\tau \frac{\partial I_{z}}{\partial V_{z}} \cdot \frac{d V_{z}}{d t} & =I_{x}-I_{y} \\
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t} & =I_{z}-\frac{I_{y}}{Q}
\end{aligned}\right.
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

To implement the time derivatives, we introduce log-compressed voltage state variables, $V_{z}$ and $V_{y}$. Using the chain rule, we can express the preceding pair of equations as

$$
\left\{\begin{array} { r } 
{ \tau \frac { \partial I _ { z } } { \partial V _ { z } } \cdot \frac { d V _ { z } } { d t } = I _ { x } - I _ { y } } \\
{ \tau \frac { \partial I _ { y } } { \partial V _ { y } } \cdot \frac { d V _ { y } } { d t } = I _ { z } - \frac { I _ { y } } { Q } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{z}\right) \frac{d V_{z}}{d t}=I_{x}-I_{y} \\
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}=I_{z}-\frac{I_{y}}{Q}
\end{array}\right.\right.
$$

CORNELL

## Dynamic MITE Network Synthesis: Second-Order LPF

To implement the time derivatives, we introduce log-compressed voltage state variables, $V_{z}$ and $V_{y}$. Using the chain rule, we can express the preceding pair of equations as

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ \tau \frac { \partial I _ { z } } { \partial V _ { z } } \cdot \frac { d V _ { z } } { d t } = I _ { x } - I _ { y } } \\
{ \tau \frac { \partial I _ { y } } { \partial V _ { y } } \cdot \frac { d V _ { y } } { d t } = I _ { z } - \frac { I _ { y } } { Q } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{z}\right) \frac{d V_{z}}{d t}=I_{x}-I_{y} \\
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}=I_{z}-\frac{I_{y}}{Q}
\end{array}\right.\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{z}}{d t}=\frac{I_{y}}{I_{z}}-\frac{I_{x}}{I_{z}} \\
\frac{w \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}=\frac{1}{Q}-\frac{I_{z}}{I_{y}}
\end{array}\right.
\end{aligned}
$$

CORNELL

## Dynamic MITE Network Synthesis: Second-Order LPF

To implement the time derivatives, we introduce log-compressed voltage state variables, $V_{z}$ and $V_{y}$. Using the chain rule, we can express the preceding pair of equations as

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ \tau \frac { \partial I _ { z } } { \partial V _ { z } } \cdot \frac { d V _ { z } } { d t } = I _ { x } - I _ { y } } \\
{ \tau \frac { \partial I _ { y } } { \partial V _ { y } } \cdot \frac { d V _ { y } } { d t } = I _ { z } - \frac { I _ { y } } { Q } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{z}\right) \frac{d V_{z}}{d t}=I_{x}-I_{y} \\
\tau\left(-\frac{w}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}=I_{z}-\frac{I_{y}}{Q}
\end{array}\right.\right. \\
& \Longrightarrow\left\{\begin{array} { l } 
{ \frac { w \tau } { U _ { \mathrm { T } } } \cdot \frac { d V _ { z } } { d t } = \frac { I _ { y } } { I _ { z } } - \frac { I _ { x } } { I _ { z } } } \\
{ \frac { w \tau } { U _ { \mathrm { T } } } \cdot \frac { d V _ { y } } { d t } = \frac { 1 } { Q } - \frac { I _ { z } } { I _ { y } } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\frac{w \tau}{C U_{\mathrm{T}}} \cdot C \frac{d V_{z}}{d t}=\frac{I_{y}}{I_{z}}-\frac{I_{x}}{I_{z}} \\
\frac{w \tau}{C U_{\mathrm{T}}} \cdot C \frac{d V_{y}}{d t}=\frac{1}{Q}-\frac{I_{z}}{I_{y}}
\end{array}\right.\right.
\end{aligned}
$$

CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
By introducing

$$
I_{\tau} \equiv \frac{C U_{\mathrm{T}}}{w \tau}, \quad I_{c z} \equiv C \frac{d V_{z}}{d t}, \quad \text { and } \quad I_{c y} \equiv C \frac{d V_{y}}{d t}
$$

we can express this pair of equations as

$$
\left\{\begin{array}{l}
\frac{I_{c z}}{I_{\tau}}=\frac{I_{y}}{I_{z}}-\frac{I_{x}}{I_{z}} \\
\frac{I_{c y}}{I_{\tau}}=\frac{1}{Q}-\frac{I_{z}}{I_{y}}
\end{array}\right.
$$

Dynamic MITE Network Synthesis: Second-Order LPF
By introducing

$$
I_{\tau} \equiv \frac{C U_{\mathrm{T}}}{w \tau}, \quad I_{c z} \equiv C \frac{d V_{z}}{d t}, \quad \text { and } \quad I_{c y} \equiv C \frac{d V_{y}}{d t}
$$

we can express this pair of equations as

$$
\left\{\begin{array} { l } 
{ \frac { I _ { c z } } { I _ { \tau } } = \frac { I _ { y } } { I _ { z } } - \frac { I _ { x } } { I _ { z } } } \\
{ \frac { I _ { c y } } { I _ { \tau } } = \frac { 1 } { Q } - \frac { I _ { z } } { I _ { y } } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
I_{c z}=\frac{I_{y} I_{\tau}}{I_{z}}-\frac{I_{x} I_{\tau}}{I_{z}} \\
I_{c y}=\frac{I_{\tau}}{Q}-\frac{I_{z} I_{\tau}}{I_{y}}
\end{array}\right.\right.
$$

## Dynamic MITE Network Synthesis: Second-Order LPF

By introducing

$$
I_{\tau} \equiv \frac{C U_{\mathrm{T}}}{w \tau}, \quad I_{c z} \equiv C \frac{d V_{z}}{d t}, \quad \text { and } \quad I_{c y} \equiv C \frac{d V_{y}}{d t}
$$

we can express this pair of equations as

$$
\left\{\begin{array} { l } 
{ \frac { I _ { c z } } { I _ { \tau } } = \frac { I _ { y } } { I _ { z } } - \frac { I _ { x } } { I _ { z } } } \\
{ \frac { I _ { c y } } { I _ { \tau } } = \frac { 1 } { Q } - \frac { I _ { z } } { I _ { y } } }
\end{array} \Longrightarrow \left\{\begin{array} { l } 
{ I _ { c z } = \frac { I _ { y } I _ { \tau } } { I _ { z } } - \frac { I _ { x } I _ { \tau } } { I _ { z } } } \\
{ I _ { c y } = \frac { I _ { \tau } } { Q } - \frac { I _ { z } I _ { \tau } } { I _ { y } } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
I_{c z}=I_{w}-I_{p z} \\
I_{c y}=\frac{I_{\tau}}{Q}-I_{p y}
\end{array}\right.\right.\right.
$$

where we have further introduced

$$
I_{w} \equiv \frac{I_{y} I_{\tau}}{I_{z}}, \quad I_{p z} \equiv \frac{I_{x} I_{\tau}}{I_{z}}, \quad \text { and } \quad I_{p y} \equiv \frac{I_{z} I_{\tau}}{I_{y}}
$$

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


Dynamic MITE Network Synthesis: Second-Order LPF


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$ $I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$ $I_{p y}+I_{c y}=I_{\tau} / Q$


Cornell

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$ $I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$ $I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$ $I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF

$$
\begin{array}{lll}
\mathrm{TLP}: & I_{z} I_{p z}=I_{x} I_{\tau} & I_{y} I_{p y}=I_{z} I_{\tau} \\
& I_{z} I_{w}=I_{y} I_{\tau} &
\end{array}
$$



KCL: $I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$



CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF

$$
\begin{aligned}
\mathrm{TLP}: & I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau} \\
& I_{z} I_{w}=I_{y} I_{\tau}
\end{aligned}
$$


KCL: $I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF

$$
\begin{aligned}
\mathrm{TLP}: & I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau} \\
& I_{z} I_{w}=I_{y} I_{\tau}
\end{aligned}
$$


KCL: $I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF

$$
\begin{aligned}
\mathrm{TLP}: & I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau} \\
& I_{z} I_{w}=I_{y} I_{\tau}
\end{aligned}
$$


KCL: $I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF

$$
\begin{aligned}
\mathrm{TLP}: & I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau} \\
& I_{z} I_{w}=I_{y} I_{\tau}
\end{aligned}
$$


$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: \quad I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$

KCL: $I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: \quad I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$ $I_{z} I_{w}=I_{y} I_{\tau}$

$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$

$$
I_{p y}+I_{c y}=I_{\tau} / Q
$$



Dynamic MITE Network Synthesis: Second-Order LPF


Dynamic MITE Network Synthesis: Second-Order LPF


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{z} I_{w}=I_{y} I_{\tau}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


Cornell

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


Cornell

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
KCL: $I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

Dynamic MITE Network Synthesis: Second-Order LPF
$\mathrm{TLP}: I_{z} I_{p z}=I_{x} I_{\tau} \quad I_{y} I_{p y}=I_{z} I_{\tau}$
$I_{z} I_{w}=I_{y} I_{\tau}$
$\mathrm{KCL}: I_{p z}+I_{c z}=I_{w}$
$I_{p y}+I_{c y}=I_{\tau} / Q$


CORNELL

