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In Search of Low-Voltage Topologies: Regulated Cascode

• Säckinger’s regulated cascode circuit has a
very high incremental Rout.

• Circuit principle used in precision current
mirrors and high-gain amplifiers.

• This simple form has a relatively poor
output swing, because V ≈ Vdiode rather
than V ≈ Vsat.

• Alternative forms have a wide output
swing, but are more complex.
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In Search of Low-Voltage Topologies: Regulated Cascode

• Suppose we make the common-source
transistor a FGMOS transistor.

• By programming Q, we can arrange that
V ≈ Vsat for any given value of Ib.

• This form has the simplicity of Säckinger’s
original, but it also has a wide output
swing.

• Not robust to drift in Q, or changes in Ib

or temperature.
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original, but it also has a wide output
swing.

• Not robust to drift in Q, or changes in Ib

or temperature.

Iout

Vout
Ib

Vin

Vc

V Q
C1

ORNELLC



3

In Search of Low-Voltage Topologies: Regulated Cascode

• We can add a second control gate and
make V ≈ Vsat by adjusting Vb rather
than Q.

• How can we set Vb to make V ≈ Vsat?
Use indirect negative feedback!

• This form is robust against (matched) drift
in Q, changes in Ib, and temperature.

• One Vb generator can be shared by
multiple regulated cascodes.
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Regulated CascodeExperimental Output I/V Characteristics
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In Search of Low-Voltage Topologies: Differential Pair

• The humble differential pair is used widely
in many analog integrated circuits.

• Its success lies in its ability to keep I1 + I2

equal to Ib via direct negative feedback.

• This venerable circuit has headroom
problems as the supply voltage shrinks.

• Its minimum allowable Vcm is about
Vdiode + Vsat.
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In Search of Low-Voltage Topologies: Differential Pair

• To extend the common-mode input range,
we can make M1 and M2 FGMOS
transistors.

• For any Ib, we can program Q so that V ≈
Vsat for Vcm = 0V.

• Unfortunately, as Vcm approaches VDD, V
gets there first. . .

• Moreover, this solution is not robust to
changes in Ib.
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In Search of Low-Voltage Topologies: Differential Pair

• If we are going to use FGMOS transistors
anyhow, can we do any better?

• Suppose we generate I1 and I2 as shown.

• We can add I1 and I2 and compare I1 + I2

with Ib as shown.

• By feeding back V into both floating gates,
we can regulate I1 + I2.
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In Search of Low-Voltage Topologies: Differential Pair

• To generate output currents, we can make
mirror copies, as shown.

• In this circuit, called the inverted differential
pair, I1+I2 is regulated via indirect negative
feedback.

• Node V moves in the opposite direction as
does Vcm, whence the name.

• This circuit has a rail-to-rail common-mode
input range, a wide output swing, and a
constant Gm!
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Experimental Results: I/V Characteristics Ib = 0.316 nA
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Experimental Results: I/V Characteristics Ib = 3.16 nA
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Experimental Results: I/V Characteristics Ib = 10.0 µA
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Experimental Results: I/V Characteristics Ib = 31.6 µA
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Experimental Results: Gm versus Vcm
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Experimental Results: I1 + I2 versus Vout
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