Low-Voltage Circuits Using Multiple-Input Floating-Gate MOS Transistors

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Lab Cornell University Ithaca, NY 14853–5401

minch@ece.cornell.edu

April 11, 2003

• Säckinger's regulated cascode circuit has a very high incremental R_{out} .

- Säckinger's regulated cascode circuit has a very high incremental R_{out} .
- Circuit principle used in precision current mirrors and high-gain amplifiers.

- Säckinger's regulated cascode circuit has a very high incremental R_{out} .
- Circuit principle used in precision current mirrors and high-gain amplifiers.
- This simple form has a relatively poor output swing, because $V \approx V_{\text{diode}}$ rather than $V \approx V_{\text{sat}}$.

- Säckinger's regulated cascode circuit has a very high incremental R_{out} .
- Circuit principle used in precision current mirrors and high-gain amplifiers.
- This simple form has a relatively poor output swing, because $V \approx V_{\text{diode}}$ rather than $V \approx V_{\text{sat}}$.
- Alternative forms have a wide output swing, but are more complex.

- Säckinger's regulated cascode circuit has a very high incremental R_{out} .
- Circuit principle used in precision current mirrors and high-gain amplifiers.
- This simple form has a relatively poor output swing, because $V \approx V_{\text{diode}}$ rather than $V \approx V_{\text{sat}}$.
- Alternative forms have a wide output swing, but are more complex.

• Suppose we make the common-source transistor a FGMOS transistor.

- Suppose we make the common-source transistor a FGMOS transistor.
- By programming Q, we can arrange that $V \approx V_{\text{sat}}$ for any given value of I_{b} .

- Suppose we make the common-source transistor a FGMOS transistor.
- By programming Q, we can arrange that $V \approx V_{\text{sat}}$ for any given value of I_{b} .
- This form has the simplicity of Säckinger's original, but it also has a wide output swing.

- Suppose we make the common-source transistor a FGMOS transistor.
- By programming Q, we can arrange that $V \approx V_{\text{sat}}$ for any given value of I_{b} .
- This form has the simplicity of Säckinger's original, but it also has a wide output swing.
- Not robust to drift in Q, or changes in $I_{\rm b}$ or temperature.

• We can add a second control gate and make $V \approx V_{\text{sat}}$ by adjusting V_{b} rather than Q.

- We can add a second control gate and make $V \approx V_{\text{sat}}$ by adjusting V_{b} rather than Q.
- How can we set $V_{\rm b}$ to make $V \approx V_{\rm sat}$?

- We can add a second control gate and make $V \approx V_{\text{sat}}$ by adjusting V_{b} rather than Q.
- How can we set $V_{\rm b}$ to make $V \approx V_{\rm sat}$? Use indirect negative feedback!

- We can add a second control gate and make $V \approx V_{\text{sat}}$ by adjusting V_{b} rather than Q.
- How can we set $V_{\rm b}$ to make $V \approx V_{\rm sat}$? Use indirect negative feedback!
- This form is robust against (matched) drift in Q, changes in $I_{\rm b}$, and temperature.

- We can add a second control gate and make $V \approx V_{\text{sat}}$ by adjusting V_{b} rather than Q.
- How can we set $V_{\rm b}$ to make $V \approx V_{\rm sat}$? Use indirect negative feedback!
- This form is robust against (matched) drift in Q, changes in $I_{\rm b}$, and temperature.
- One $V_{\rm b}$ generator can be shared by multiple regulated cascodes.

Regulated CascodeExperimental Output I/V Characteristics

Regulated CascodeExperimental Output I/V Characteristics

Regulated CascodeExperimental Output I/V Characteristics

• The humble differential pair is used widely in many analog integrated circuits.

- The humble differential pair is used widely in many analog integrated circuits.
- Its success lies in its ability to keep $I_1 + I_2$ equal to I_b via direct negative feedback.

- The humble differential pair is used widely in many analog integrated circuits.
- Its success lies in its ability to keep $I_1 + I_2$ equal to I_b via direct negative feedback.
- This venerable circuit has headroom problems as the supply voltage shrinks.

- The humble differential pair is used widely in many analog integrated circuits.
- Its success lies in its ability to keep $I_1 + I_2$ equal to I_b via direct negative feedback.
- This venerable circuit has headroom problems as the supply voltage shrinks.
- Its minimum allowable $V_{\rm cm}$ is about $V_{\rm diode} + V_{\rm sat}$.

5

• To extend the common-mode input range, we can make M_1 and M_2 FGMOS transistors.

• To extend the common-mode input range, we can make M_1 and M_2 FGMOS transistors.

- To extend the common-mode input range, we can make M_1 and M_2 FGMOS transistors.
- For any $I_{\rm b}$, we can program Q so that $V \approx V_{\rm sat}$ for $V_{\rm cm} = 0$ V.

- To extend the common-mode input range, we can make M_1 and M_2 FGMOS transistors.
- For any $I_{\rm b}$, we can program Q so that $V \approx V_{\rm sat}$ for $V_{\rm cm} = 0$ V.
- Unfortunately, as $V_{\rm cm}$ approaches $V_{\rm DD}$, V gets there first...

- To extend the common-mode input range, we can make M_1 and M_2 FGMOS transistors.
- For any $I_{\rm b}$, we can program Q so that $V \approx V_{\rm sat}$ for $V_{\rm cm} = 0$ V.
- Unfortunately, as $V_{\rm cm}$ approaches $V_{\rm DD}$, V gets there first...
- Moreover, this solution is not robust to changes in $I_{\rm b}$.

5

• If we are going to use FGMOS transistors anyhow, can we do any better?

- If we are going to use FGMOS transistors anyhow, can we do any better?
- Suppose we generate I_1 and I_2 as shown.

- If we are going to use FGMOS transistors anyhow, can we do any better?
- Suppose we generate I_1 and I_2 as shown.
- We can add I_1 and I_2 and compare $I_1 + I_2$ with I_b as shown.

- If we are going to use FGMOS transistors anyhow, can we do any better?
- Suppose we generate I_1 and I_2 as shown.
- We can add I_1 and I_2 and compare $I_1 + I_2$ with I_b as shown.

- If we are going to use FGMOS transistors anyhow, can we do any better?
- Suppose we generate I_1 and I_2 as shown.
- We can add I_1 and I_2 and compare $I_1 + I_2$ with I_b as shown.
- By feeding back V into both floating gates, we can regulate $I_1 + I_2$.

6

- If we are going to use FGMOS transistors anyhow, can we do any better?
- Suppose we generate I_1 and I_2 as shown.
- We can add I_1 and I_2 and compare $I_1 + I_2$ with I_b as shown.
- By feeding back V into both floating gates, we can regulate $I_1 + I_2$.

• To generate output currents, we can make mirror copies, as shown.

- To generate output currents, we can make mirror copies, as shown.
- In this circuit, called the inverted differential pair, I_1+I_2 is regulated via indirect negative feedback.

- To generate output currents, we can make mirror copies, as shown.
- In this circuit, called the inverted differential pair, I_1+I_2 is regulated via indirect negative feedback.
- Node V moves in the opposite direction as does $V_{\rm cm}$, whence the name.

- To generate output currents, we can make mirror copies, as shown.
- In this circuit, called the inverted differential pair, I_1+I_2 is regulated via indirect negative feedback.
- Node V moves in the opposite direction as does $V_{\rm cm}$, whence the name.
- This circuit has a rail-to-rail common-mode input range, a wide output swing, and a constant $G_{\rm m}!$

Experimental Results: I/V Characteristics $I_{\rm b} = 0.316 \,\mathrm{nA}$

Experimental Results: I/V Characteristics $I_{\rm b} = 3.16 \,\mathrm{nA}$

Experimental Results: I/V Characteristics $I_{\rm b} = 3.16 \,\mu \text{A}$

Experimental Results: I/V Characteristics $I_{\rm b} = 10.0 \,\mu \text{A}$

Experimental Results: I/V Characteristics $I_{\rm b} = 31.6 \,\mu \text{A}$

Experimental Results: $G_{\rm m}$ versus $V_{\rm cm}$

Experimental Results: $I_1 + I_2$ versus V_{out}

