An Inverted CMOS Class-AB Transconductor Featuring Rail-to-Rail Common-Mode Input Range and Constant Transconductance Gain

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits & Systems Lab Franklin W. Olin College of Engineering Needham, MA 02492

bradley.minch@olin.edu

23 October 2014

• $I_1 = f(V_1, -V)$ and $I_2 = f(V_2, -V)$, where $f(\cdot)$ is an expansive nonlinearity.

- $I_1 = f(V_1, -V)$ and $I_2 = f(V_2, -V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

- $I_1 = f(V_1, -V)$ and $I_2 = f(V_2, -V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_{\rm b}.$
- V follows $V_{\rm cm}$ with an offset.

- $I_1 = f(V_1, -V)$ and $I_2 = f(V_2, -V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_b$.
- V follows $V_{\rm cm}$ with an offset.
- If I_1 and I_2 are disparate, $\max(I_1,I_2) \to I_{\mathrm{b}}$ and so $I_{\mathrm{out}} = I_1 I_2$ limits at $\pm I_{\mathrm{b}}$.

• $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_b$.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_{\rm b}$.
- ullet V is *inverted* with respect to $V_{
 m cm}$.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_1 + I_2 \rightarrow I_{\rm b}$.
- V is *inverted* with respect to $V_{\rm cm}$.
- If I_1 and I_2 are disparate, $\max(I_1,I_2) \to I_{\mathrm{b}}$ and so $I_{\mathrm{out}} = I_1 I_2$ limits at $\pm I_{\mathrm{b}}$.

• Add M1b and M2b to make mirror copies of I_1 and I_2 .

- Add M1b and M2b to make mirror copies of I_1 and I_2 .
- C_1 sets the linear range and transconductance gain.

- Add M1b and M2b to make mirror copies of I_1 and I_2 .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.

- Add M1b and M2b to make mirror copies of I_1 and I_2 .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.
- Input and output voltage ranges are both rail to rail.

- Add M1b and M2b to make mirror copies of I_1 and I_2 .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.
- Input and output voltage ranges are both rail to rail.
- Transconductance gain is nearly constant with $V_{
 m cm}$.

What would happen if we arranged M1a and M1b in series rather than in parallel?

• $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- V adjusts itself so that $I_3 \to I_{
 m b}$, where I_3 is set by $\min(I_1,I_2)$.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- $oldsymbol{\cdot} V$ adjusts itself so that $I_3
 ightarrow I_{
 m b}$, where I_3 is set by $\min(I_1,I_2)$.
- V is *inverted* with respect to $V_{\rm cm}$.

- $I_1 = f(V_1, V)$ and $I_2 = f(V_2, V)$, where $f(\cdot)$ is an expansive nonlinearity.
- $oldsymbol{\cdot} V$ adjusts itself so that $I_3
 ightarrow I_{
 m b}$, where I_3 is set by $\min(I_1,I_2)$.
- V is *inverted* with respect to $V_{\rm cm}$.
- If I_1 and I_2 are disparate, $\min(I_1,I_2) \to I_{\mathrm{b}}$ and so $I_{\mathrm{out}} = I_1 I_2$ grows rapidly.

• Add $\rm M1c$ and $\rm M2c$ to symmetrize for $I_{\rm b}$ in MI/SI .

- Add $\rm M1c$ and $\rm M2c$ to symmetrize for $I_{\rm b}$ in MI/SI .
- C_1 sets the linear range and transconductance gain.

- Add $\rm M1c$ and $\rm M2c$ to symmetrize for $I_{\rm b}$ in MI/SI .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.

- Add $\rm M1c$ and $\rm M2c$ to symmetrize for $I_{\rm b}$ in MI/SI .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.
- Input and output voltage ranges are both rail to rail.

- Add $\rm M1c$ and $\rm M2c$ to symmetrize for $I_{\rm b}$ in MI/SI .
- C_1 sets the linear range and transconductance gain.
- C_2 sets the ΔV needed to compensate a $\Delta V_{\rm cm}$ or a $\Delta I_{\rm b}$.
- Input and output voltage ranges are both rail to rail.
- Transconductance gain is nearly constant with $V_{
 m cm}$.

Transconductance Gain vs. Common-Mode

