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Translinear Circuits: What’s in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose
large-signal behavior hinges both on the precise exponential I/V relationship of the bipolar
transistor and on the intimate thermal contact and close matching of monolithically integrated
devices.

The word translinear refers to the exponential I/V characteristic of the bipolar transistor—its
transconductance is linear in its collector current:

IC = Ise
VBE/UT =⇒ gm =

∂IC
∂VB

= Ise
VBE/UT︸ ︷︷ ︸
IC

· 1
UT

=
IC
UT

.

Gilbert also meant the word translinear to refer to circuit analysis and design principles that
bridge the gap between the familiar territory of linear circuits and the uncharted domain of
nonlinear circuits.
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Gummel Plot of a Forward-Active Bipolar Transistor
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Translinearity of the Forward-Active Bipolar Transistor
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gm =
∂IC
∂VB

=
IC
UT

δIC ≈ gmδVB
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The Translinear Principle

Consider a closed loop of base-emitter junctions of four closely matched npn bipolar transistors
biased in the forward-active region and operating at the same temperature. Kirchhoff’s voltage
law (KVL) implies that

V1 + V2 = V3 + V4

UT log
I1
Is

+ UT log
I2
Is

= UT log
I3
Is

+ UT log
I4
Is

log
I1I2
I2s

= log
I3I4
I2s

I1I2︸︷︷︸
CCW

= I3I4︸︷︷︸
CW

.
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This result is a particular case of Gilbert’s translinear principle (TLP): The product of the
clockwise currents is equal to the product of the counterclockwise currents.
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Static Translinear Circuits: Geometric Mean

We neglect both base currents (i.e., βF = ∞) and the Early
effect, and we assume that all transistors operate in their
forward-active regions. Then, we have that

TLP =⇒ IxIy = I2z =⇒ Iz =
√
IxIy.
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Static Translinear Circuits: Geometric Mean
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Static Translinear Circuits: Geometric Mean
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Static Translinear Circuits: Squaring/Reciprocal

Again, we neglect both base currents (i.e., βF = ∞) and the
Early effect, and we assume that all transistors operate in their
forward-active regions. Then, we have that

TLP =⇒ I2x = IyIz =⇒ Iz =
I2x
Iy
.
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Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuits: Pythagorator

Again, we neglect both base currents and the Early effect, and we assume that all transistors
operate in their forward-active regions. Then, we have that

TLP1 =⇒ I2x = Iz1Iz =⇒ Iz1 =
I2x
Iz

TLP2 =⇒ I2y = Iz2Iz =⇒ Iz2 =
I2y
Iz

KCL =⇒ Iz = Iz1 + Iz2 =
I2x
Iz

+
I2y
Iz

=⇒ I2z = I2x + I2y =⇒ Iz =
√
I2x + I2y .

This circuit is called the pythagorator.
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Dynamic Translinear Circuits: First-Order Low-Pass Filter

Next, consider the dynamic translinear circuit shown below, comprising a translinear loop and
a capacitor. We shall again neglect base currents and the Early effect. We also assume that
all transistors operate in the forward-active region. Then, we have that

TLP =⇒ IτIx = IpIy =⇒ Ip =
IτIx
Iy

Ic = C
dV

dt
= C

d

dt

(
UT log

Iy
Is

)
=

CUT

Iy

dIy
dt

KCL =⇒ Ic+Iτ = Ip =⇒ CUT

Iy

dIy
dt

+Iτ =
IτIx
Iy

=⇒ CUT

Iτ︸ ︷︷ ︸
τ

dIy
dt

+ Iy = Ix =⇒ τ
dIy
dt

+ Iy = Ix.

This circuit is a first-order log-domain filter.
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Dynamic Translinear Circuits: RMS-to-DC Converter

TLP =⇒ I2wIτ = IpI
2
z =⇒ Ip =

IτI2w
I2z

Ic = C
d

dt

(
2UT log

Iz
Is

)
= 2

CUT

Iz

dIz
dt

KCL =⇒ Ic + Iτ = Ip

=⇒ 2CUT

Iz

dIz
dt

+ Iτ =
IτI2w
I2z

=⇒ CUT

Iτ︸ ︷︷ ︸
τ

2 Iz
dIz
dt

+ I2z = I2w
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Dynamic Translinear Circuits: RMS-to-DC Converter

=⇒ τ

(
2 Iz

dIz
dt

)
+ I2z = I2w

=⇒ τ
d

dt

(
I2z
)
+ I2z = I2w

=⇒ τ
d

dt

(
I2z
I1︸︷︷︸
Iy

)
+

I2z
I1︸︷︷︸
Iy

=
I2w
I1︸︷︷︸
Ix

Iz =
√
I1Iy︸ ︷︷ ︸

root

τ
dIy
dt

+ Iy = Ix
︸ ︷︷ ︸

mean

Ix =
I2w
I1︸ ︷︷ ︸

square
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Why Translinear Circuits?

• Translinear circuits are universal. Conjecture: In principle, we can realize any system
whose description we can write down as a nonlinear ODE with time as its independent
variable as a dynamic translinear circuit.

• Translinear circuits are synthesizable via highly structured methods. They should be very
amenable to the development both of CAD tools and of reconfigurable FPAA architectures
for rapid prototyping and deployment of translinear analog signal processing systems.

• Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear
circuits are linear because of device nonlinearities rather than in spite of them.

• Translinear circuits are tunable electronically over a wide dynamic range of parameters
(e.g., gains, corner frequencies, quality factors).

• Translinear circuits are robust. Carefully designed translinear circuits are temperature
insensitive and do not depend on device or technology parameters.
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Simple EKV Model of the Saturated nMOS Transistor

We model the saturation current of an nMOS transistor by

Isat = SIs log
2
(
1 + e(κ(VG−VT0)−VS)/2UT

)

≈






SIse
(κ(VG−VT0)−VS)/UT, κ (VG − VT0)− VS < 0

SIs
4U2

T

(κ (VG − VT0)− VS)
2 , κ (VG − VT0)− VS > 0,

where

UT =
kT

q
, S =

W

L
, Is =

2µCoxU2
T

κ
, and κ =

Cox

Cox + Cdep
.

Weak inversion operation corresponds to Isat % SIs, moderate inversion operation cor-
responds to Isat ≈ SIs, and strong inversion operation to Isat & SIs. Note that SIs is
approximately twice the saturation current at threshold.
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Saturation Current of an nMOS Transistor
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Translinearity of the Saturated nMOS Transistor
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Weak Inversion is Suited to Audio Signal Processing
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For integrated continous-time fil-
ters, typically

fc =
gm
2πC

.

On-chip capacitors are typically on
the order of 1 pF or of 10 pF.

If we choose a reasonable value for
C, say C = 5/π pF ≈ 1.59 pF,
then we find that weak inversion
maps onto the audio band.



14

Weak Inversion is Suited to Audio Signal Processing

-!!. -!!/ -! -!! -!!! -0 -!0
"5IE)*3,

-!!

-!A

-!!A

-M

-!M

-!!M

-H

/ >
)*N

O,

-A

-!/-/

."5)4)%";%)!3

For integrated continous-time fil-
ters, typically

fc =
gm
2πC

.

On-chip capacitors are typically on
the order of 1 pF or of 10 pF.

If we choose a reasonable value for
C, say C = 5/π pF ≈ 1.59 pF,
then we find that weak inversion
maps onto the audio band.



15

Weak-Inversion MOS Translinear Principle

When designing weak-inversion MOS translinear circuits, if we restrict ourselves to using
translinear loops that alternate between clockwise and counterclockwise elements, we obtain
Gilbert’s original TLP, with no dependence on the body effect (i.e., κ).

stacked loop alternating loop

"-

"# "%

"&

"%"# "&"-

TLP: I1Iκ2 = Iκ3 I4 TLP: I1I3 = I2I4

This restriction does not limit the class of systems that we can implement. However, designs
based on alternating loops generally consume more current but operate on a lower power
supply voltage than do designs based on stacked loops.
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Static Translinear Circuits: Squaring/Reciprocal

TLP =⇒ I2x = IyIz =⇒ Iz =
I2x
Iy
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Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r =
√
x2 + y2, where x > 0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

x ≡ Ix
I1
, y ≡ Iy

I1
, and r ≡ Ir

I1
.

We substitute these into the original equation and rearrange to obtain

Ir
I1

=

√(
Ix
I1

)2

+

(
Iy
I1

)2

=⇒ I2r = I2x + I2y =⇒ Ir =
I2x
Ir︸︷︷︸
Ir1

+
I2y
Ir︸︷︷︸
Ir2
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Ir1Ir = I2x
Ir2Ir = I2y

KCL: Ir = Ir1+Ir2
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Static Translinear Circuit Synthesis: Pythagorator
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Static Translinear Circuit Synthesis: Pythagorator
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Ir1Ir = I2x
Ir2Ir = I2y

KCL: Ir = Ir1+Ir2
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Static Translinear Circuit Synthesis: Vector Normalizer

Synthesize a two-dimensional vector-normalization circuit implementing

u =
x√

x2 + y2
and v =

y√
x2 + y2

, where x > 0 and y > 0.

Each equation shares r ≡
√

x2 + y2, which we can use to decompose the system as

u =
x

r
, v =

y

r
, and r =

√
x2 + y2, where x > 0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

x ≡ Ix
I1
, y ≡ Iy

I1
, u ≡ Iu

I1
, v ≡ Iv

I1
, and r ≡ Ir

I1
.
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Synthesize a two-dimensional vector-normalization circuit implementing
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x√
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Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

Iu
I1

=
Ix/I1
Ir/I1

and
Iv
I1

=
Iy/I1
Ir/I1

=⇒ IuIr = IxI1 and IvIr = IyI1
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Static Translinear Circuit Synthesis: Vector Normalizer

TLP: Ir1Ir = I2x
Ir2Ir = I2y
IuIr = IxI1
IvIr = IyI1

KCL: Ir = Ir1+Ir2
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Dynamic Translinear Circuit Synthesis: Output Structures

noninverting inverting

* "$

"$

"3

!3

">3

"$

!!
*

"$

"3!3

">3

"$
!!

In = Iτe(Vn−V0)/UT In = Iτeκ(V0−Vn)/UT

∂In
∂Vn

=
In
UT

∂In
∂Vn

= −κIn
UT
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

τ
dy

dt
+ y = x, where x > 0.

We represent each signal as a ratio of a signal current to the unit current:

x ≡ Ix
I1

and y ≡ Iy
I1
.

Substituting these into the ODE, we obtain

τ
d

dt

(
Iy
I1

)
+

Iy
I1

=
Ix
I1

=⇒ τ
dIy
dt

+ Iy = Ix.
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, Vy.
Using the chain rule, we can express the preceding equation as

τ
∂Iy
∂Vy

· dVy

dt
+ Iy = Ix =⇒ τ

(
− κ

UT
Iy

)
dVy

dt
+ Iy = Ix

=⇒ −κτ

UT
· dVy

dt
+ 1 =

Ix
Iy

=⇒ − κτ

CUT︸ ︷︷ ︸
1/Iτ

·CdVy

dt︸ ︷︷ ︸
Ic

+1 =
Ix
Iy

=⇒ −Ic
Iτ

+ 1 =
Ix
Iy

=⇒ Iτ − Ic =
IτIx
Iy︸︷︷︸
Ip

.
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Dynamic Translinear Circuit Synthesis: First-Order LPF

TLP: IpIy = IxIτ KCL: Ic + Ip = Iτ
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

Synthesize an RMS-to-DC converter described by

x = w2, τ
dy

dt
+ y = x, and z =

√
y.

We can eliminate x and y from the system description by substituting

x = w2, y = z2, and
dy

dt
= 2z

dz

dt

into the linear ODE describing the low-pass filter, obtaining a first-order nonlinear ODE
describing the system given by

2τz
dz

dt
+ z2 = w2.
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

w+ ≡ Iw+

I1
= 1

2

(
1 + eκ(Vw−V0)/UT

)

w− ≡ Iw−
I1

= 1
2

(
1 + e−κ(Vw−V0)/UT

)

w ≡ Iw
I1

= w+ − w−

w = sinh
κ (Vw − V0)

UT

w′ ≡ Iw′

I1
= w++w−−1

w′ = cosh
κ (Vw − V0)

UT

w2 = (w′)2 − 1

"-

"-P

!!

"Q

"-P

"-<

"Q

"Q

"-R

!-

"-P

"-<

"-
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w′, as just described. Substituting
w2 = (w′)2 − 1 into the nonlinear ODE, we obtain

2τz
dz

dt
+ z2 = (w′)

2 − 1.

We represent each signal as a ratio of a signal current to the unit current:

w′ ≡ Iw′

I1
and z ≡ Iz

I1
.

Substituting these into the nonlinear ODE, we obtain

2τ
Iz
I1

· d
dt

(
Iz
I1

)
+

(
Iz
I1

)2

=

(
Iw′

I1

)2

− 1 =⇒ 2τIz
dIz
dt

+ I2z = I2w′ − I21 .
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, Vz.
Using the chain rule, we can express the preceding equation as

2τIz
∂Iz
∂Vz

· dVz

dt
+ I2z = I2w′ − I21 =⇒ 2τIz

(
− κ

UT
Iz

)
dVz

dt
+ I2z = I2w′ − I21

=⇒ −2κτ

UT
· dVz

dt
+ 1 =

I2w′

I2z
− I21

I2z
=⇒ − 2κτ

CUT︸ ︷︷ ︸
1/Iτ

·CdVz

dt︸ ︷︷ ︸
Ic

+1 =
I2w′

I2z
− I21

I2z

=⇒ −Ic
Iτ

+ 1 =
I2w′

I2z
− I21

I2z
=⇒ Iτ − Ic =

IτI2w′

I2z︸ ︷︷ ︸
Ip

− IτI21
I2z︸︷︷︸
Iq

.
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