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Translinear Circuits: What’s in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose
large-signal behavior hinges both on the precise exponential I/V relationship of the bipolar
transistor and on the intimate thermal contact and close matching of monolithically integrated
devices.
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Translinear Circuits: What’s in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose
large-signal behavior hinges both on the precise exponential I/V relationship of the bipolar
transistor and on the intimate thermal contact and close matching of monolithically integrated
devices.

The word translinear refers to the exponential I/V characteristic of the bipolar transistor—its
transconductance is linear in its collector current:
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large-signal behavior hinges both on the precise exponential I/V relationship of the bipolar
transistor and on the intimate thermal contact and close matching of monolithically integrated
devices.

The word translinear refers to the exponential I/V characteristic of the bipolar transistor—its
transconductance is linear in its collector current:
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Gilbert also meant the word translinear to refer to circuit analysis and design principles that
bridge the gap between the familiar territory of linear circuits and the uncharted domain of
nonlinear circuits.
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Gummel Plot of a Forward-Active Bipolar Transistor
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Translinearity of the Forward-Active Bipolar Transistor
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The Translinear Principle

Consider a closed loop of base-emitter junctions of four closely matched npn bipolar transistors
biased in the forward-active region and operating at the same temperature. Kirchhoft’s voltage

law (KVL) implies that
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This result is a particular case of Gilbert’s translinear principle (TLP): The product of the
clockwise currents is equal to the product of the counterclockwise currents.
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Why Translinear Circuits?
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Why Translinear Circuits?

e Translinear circuits are universal. Conjecture: In principle, we can realize any system
whose description we can write down as a nonlinear ODE with time as its independent
variable as a dynamic translinear circuit.
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Why Translinear Circuits?

e Translinear circuits are universal. Conjecture: In principle, we can realize any system
whose description we can write down as a nonlinear ODE with time as its independent
variable as a dynamic translinear circuit.

e Translinear circuits are synthesizable via highly structured methods. They should be very
amenable to the development both of CAD tools and of reconfigurable FPAA architectures
for rapid prototyping and deployment of translinear analog signal processing systems.
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Why Translinear Circuits?

e Translinear circuits are universal. Conjecture: In principle, we can realize any system
whose description we can write down as a nonlinear ODE with time as its independent
variable as a dynamic translinear circuit.

e Translinear circuits are synthesizable via highly structured methods. They should be very
amenable to the development both of CAD tools and of reconfigurable FPAA architectures
for rapid prototyping and deployment of translinear analog signal processing systems.

e Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear
circuits are linear because of device nonlinearities rather than in spite of them.

e Translinear circuits are tunable electronically over a wide dynamic range of parameters
(e.g., gains, corner frequencies, quality factors).

e Translinear circuits are robust. Carefully designed translinear circuits are temperature
insensitive and do not depend on device or technology parameters.
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Simple EKV Model of the Saturated nMOS Transistor
We model the saturation current of an nMOS transistor by

ot = Slslog2<1—|-e<"3(VG_VT0)—VS)/2UT)

( Sjse(%(VG—VTo)—Vs)/UT7 k (Vo — Ving) — Vg < 0
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Weak inversion operation corresponds to Ig,t << Slg, moderate inversion operation cor-
responds to Igy ~ S, and strong inversion operation to Ig,; > SIs. Note that SIg is
approximately twice the saturation current at threshold.
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Saturation Current of an nMOS Transistor
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Weak-Inversion MOS Translinear Principle

When designing weak-inversion MOS translinear circuits, if we restrict ourselves to using
translinear loops that alternate between clockwise and counterclockwise elements, we obtain
Gilbert’s original TLP, with no dependence on the body effect (i.e., k).

stacked loop alternating loop
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This restriction does not limit the class of systems that we can implement. However, designs
based on alternating loops generally consume more current but operate on a lower power
supply voltage than do designs based on stacked loops.
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Static Translinear Circuits: Squaring/Reciprocal

LORUONID

¢Ifl? I:N ¢I:I: Iz“\

TP = =1, — IZ:I—f% VH jF*‘T }7‘/0
T Iy ~ | | —I = | —

4 Y Olin College



10

Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r=+x?+y?, where >0 and y > 0.
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r=+x?+y?, where >0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

We substitute these into the original equation and rearrange to obtain
I, L.\° (L)’
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r=+x?+y?, where >0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

We substitute these into the original equation and rearrange to obtain
I L.\° (L)’
—=4/+ — — II=I1 +1
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r=+x?+y?, where >0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

We substitute these into the original equation and rearrange to obtain
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Il = I2 KCL: I = Iy + 1
Lol = I2
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Il = I? KCL: I = Iy + 1
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Static Translinear Circuit Synthesis: Pythagorator
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Static Translinear Circuit Synthesis: Pythagorator

TLP: I I, = I2
I.ol, = Iy2
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Il = I2 KCL: I, = Iy + 1
Lol = I2

A (5 A L. [ L]

4 Y Olin College




13

Dynamic Translinear Circuit
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

dy

Tdt—I—y::L’, where x > 0.
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

d
Td—i—I—y—a: where x > 0.

We represent each signal as a ratio of a signal current to the unit current:

_ L _ 1y
T = I_l and Yy = I_l
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

dy

T—+y=x, where x> 0.

dt

We represent each signal as a ratio of a signal current to the unit current:

1y

Substituting these into the ODE, we obtain
d (I I
dt Il Il Il
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

d
Td—gZ—Fy::L’, where x > 0.

We represent each signal as a ratio of a signal current to the unit current:

~

Y
I

Substituting these into the ODE, we obtain

d (I,\ I, I, dI,
() yr= — Vo=
Tt <11> LT Ta
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

3[ dV
"ov, dt L=
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

o1, v, av,
I,=1, — r(-21 I,=1,
v, @ T(UT>dt+
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

I, d d
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I, d d
(9 V—|—Iy:Ix — T(——I) V—I-I—]

GV dt Ut dt
kT dV) I, KT av,, I,
5T | =2 LI TR R
U @ 0TI, Toun 1,
4 Y Olin College % MAD VLSI



14

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

I, d d
(9 V—|—Iy:Ix — T(——I) V—I-I—]

(9V dt Ut dt
kT dV) I, KT av,, I,
5T | =2 LI TR R
IR Cup .,
1 /17 Ic
4 Y Olin College % MAD VLSI



14

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

I, d d
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

(9] dV K dV,
I,=1, — — I, )| 2+ 1,=1,
"oV, dt T( UTy>dt+y
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Dynamic Translinear Circuit Synthesis: First-Order LPF

TLP: LI, =I,I, KCL: I+ I, =1,
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Dynamic Translinear Circuit Synthesis: First-Order LPF
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Dynamic Translinear Circuit Synthesis: First-Order LPF

TLP: LI, =I,I, KCL: I+ I, =1,
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter
Synthesize an RMS-to-DC converter described by

d
T = w?, Td—‘:{—l—y:a:, and 2z = ./y.
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

Synthesize an RMS-to-DC converter described by

2 dy

dt—l—y—az and 2z = ./y.

We can eliminate x and y from the system description by substituting

into the linear ODE describing the low-pass filter, obtaining a first-order nonlinear ODE

describing the system given by

d
QTZ—Z + 2% = w?.

dt
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w’, as just described. Substituting

w? = (w')” — 1 into the nonlinear ODE, we obtain
d
QTzd—j +22= () - 1.
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w’, as just described. Substituting
w? = (w')” — 1 into the nonlinear ODE, we obtain

d
QTzd—j +22= () - 1.

We represent each signal as a ratio of a signal current to the unit current:

QT‘

1.
! Y ooand z ===,

I I

w
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w’, as just described. Substituting

w? = (w')” — 1 into the nonlinear ODE, we obtain

dz

2ri— 4+ 22 = (W)’ — 1.

dt

We represent each signal as a ratio of a signal current to the unit current:

/ Iw’ I,

w =

I I

Substituting these into the nonlinear ODE, we obtain
I d (I IN\?  [(I,\°
2 : =] = —1
T at (Il> " (Il) <11>
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w’, as just described. Substituting

w? = (w')” — 1 into the nonlinear ODE, we obtain
d
QTzd—j +22= () - 1.

We represent each signal as a ratio of a signal current to the unit current:

.

1.
! Y oand z=-=

I Iy

w

Substituting these into the nonlinear ODE, we obtain

I, d (I I\? I\ 2 dl
2= . z Z) = () -1 = 27 L2+ 12=1% -
T, dt([1>+<ll) <11> Thegy T = e T4
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, > 19 5
27l I = Iy I
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, dV,
orl,—= . —Z 4 [2=1]2, —I? orl, [ ——1I =12 -1T7
T 8‘/2 dt + z w 1 — T ( UT > dt —+ z w 1
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, dV,
i <. z 12212/_12 9 I A 12212/_12
211 8‘/2 dt + z w 1 — T ( UT ) dt —+ z w 1
:>_2w/<, de+1_Ii/_112
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, dV,
ol —= — 24 1*=12, - I? oL, | ——1I I2=1-1If
T 8‘/2 dt + z w 1 — T ( UT ) dt —+ z w 1
2w dvz+1_130,_112 2T Cde+1_IfU,_112
Ur dt 12 ]2 CUr ~dt =~ 12 ]2
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, dV,

ol = — 24+ I* =12, I} 211 I I2=1I,-1;
oy, ar T T e T T(UT>dt+z w
2wk AV 12, I? . 287 AAV2 12, I?

B . T2 12 B ~— 7127 72
Ur dt 2 ]2 CUr __dt, 2 ]
1/1, L
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V.
Using the chain rule, we can express the preceding equation as

ol, dV, dV,
27— 4+ I2=12 -1} 271 I 2=1-1
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V,

Using the chain rule, we can express the preceding equation as

oI, dv. dV,
oo E 2222, 2 — oL (-1, I2=1I,-1I
v, T T T e T L\ gl ) T e
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, V,

Using the chain rule, we can express the preceding equation as

oI, dV, dV,
orl, 2. 22 12— orp (-, I o
v, @ e T e A L\l ) TE ek

2w dVZH_IEU, I 257 AdVe | 1_130, I
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: I,1%=I,12, KCL: I+1,=1I.+1,
I1%=I.I?
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: 1,12 = I,12, KCL: I+1,=1I.+1,
112 =I.I?
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: I,1%=I,12, KCL: I+1,=1I.+1,
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: 1,12 =112, KCL: I+1,=I.+I,
I1%=I.I?
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: 1,12 =112, KCL: I.+1,=1,+1I,
112 =I.I?
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter
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