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Translinear Circuits: What’s in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose
large-signal behavior hinges both on the precise exponential I/V relationship of the bipolar
transistor and on the intimate thermal contact and close matching of monolithically integrated
devices.

The word translinear refers to the exponential I/V characteristic of the bipolar transistor—its
transconductance is linear in its collector current:

IC = Ise
VBE/UT =⇒ gm =

∂IC

∂VB
= Ise

VBE/UT︸ ︷︷ ︸
IC

· 1
UT

=
IC

UT
.

Gilbert also meant the word translinear to refer to circuit analysis and design principles that
bridge the gap between the familiar territory of linear circuits and the uncharted domain of
nonlinear circuits.
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Gummel Plot of a Forward-Active Bipolar Transistor
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Translinearity of the Forward-Active Bipolar Transistor
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gm =
∂IC

∂VB
=

IC

UT

δIC ≈ gmδVB
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The Translinear Principle

Consider a closed loop of base-emitter junctions of four closely matched npn bipolar transistors
biased in the forward-active region and operating at the same temperature. Kirchhoff’s voltage
law (KVL) implies that

V1 + V2 = V3 + V4

UT log
I1

Is
+ UT log

I2

Is
= UT log

I3

Is
+ UT log

I4

Is

log
I1I2

I2
s

= log
I3I4

I2
s

I1I2︸︷︷︸
CCW

= I3I4︸︷︷︸
CW

.
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This result is a particular case of Gilbert’s translinear principle (TLP): The product of the
clockwise currents is equal to the product of the counterclockwise currents.
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Why Translinear Circuits?

• Translinear circuits are universal. Conjecture: In principle, we can realize any system
whose description we can write down as a nonlinear ODE with time as its independent
variable as a dynamic translinear circuit.

• Translinear circuits are synthesizable via highly structured methods. They should be very
amenable to the development both of CAD tools and of reconfigurable FPAA architectures
for rapid prototyping and deployment of translinear analog signal processing systems.

• Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear
circuits are linear because of device nonlinearities rather than in spite of them.

• Translinear circuits are tunable electronically over a wide dynamic range of parameters
(e.g., gains, corner frequencies, quality factors).

• Translinear circuits are robust. Carefully designed translinear circuits are temperature
insensitive and do not depend on device or technology parameters.
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Simple EKV Model of the Saturated nMOS Transistor

We model the saturation current of an nMOS transistor by

Isat = SIs log2
(
1 + e(κ(VG−VT0)−VS)/2UT

)

≈

⎧⎪⎨
⎪⎩

SIse
(κ(VG−VT0)−VS)/UT, κ (VG − VT0) − VS < 0

SIs

4U2
T

(κ (VG − VT0) − VS)
2 , κ (VG − VT0) − VS > 0,

where

UT =
kT

q
, S =

W

L
, Is =

2μCoxU
2
T

κ
, and κ =

Cox

Cox + Cdep
.

Weak inversion operation corresponds to Isat � SIs, moderate inversion operation cor-
responds to Isat ≈ SIs, and strong inversion operation to Isat � SIs. Note that SIs is
approximately twice the saturation current at threshold.
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Saturation Current of an nMOS Transistor
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Translinearity of the Saturated nMOS Transistor
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gm =
∂Isat

∂VG
=

κIsat

UT
, Isat � SIs

δIsat ≈ gmδVG
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Weak-Inversion MOS Translinear Principle

When designing weak-inversion MOS translinear circuits, if we restrict ourselves to using
translinear loops that alternate between clockwise and counterclockwise elements, we obtain
Gilbert’s original TLP, with no dependence on the body effect (i.e., κ).

stacked loop alternating loop

��

�� ��

��

���� ����

TLP: I1I
κ
2 = Iκ

3 I4 TLP: I1I3 = I2I4

This restriction does not limit the class of systems that we can implement. However, designs
based on alternating loops generally consume more current but operate on a lower power
supply voltage than do designs based on stacked loops.
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Static Translinear Circuits: Squaring/Reciprocal

TLP =⇒ I2
x = IyIz =⇒ Iz =

I2
x

Iy
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Static Translinear Circuits: Squaring/Reciprocal
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Static Translinear Circuits: Squaring/Reciprocal

�� ��� ���� �� ���
�

��


��

���

����

��

���

�
�


��



�
	 
�


�
��

���
��

��
��

�	 �	�


��

�� ��

Iz =
I2
x

Iy
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Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

r =
√

x2 + y2, where x > 0 and y > 0.

We represent each signal as a ratio of a signal current to the unit current:

x ≡ Ix

I1
, y ≡ Iy

I1
, and r ≡ Ir

I1
.

We substitute these into the original equation and rearrange to obtain

Ir

I1
=

√(
Ix

I1

)2

+
(

Iy

I1

)2

=⇒ I2
r = I2

x + I2
y =⇒ Ir =

I2
x

Ir︸︷︷︸
Ir1

+
I2
y

Ir︸︷︷︸
Ir2
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Static Translinear Circuit Synthesis: Pythagorator

TLP: Ir1Ir = I2
x

Ir2Ir = I2
y

KCL: Ir = Ir1+Ir2
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Dynamic Translinear Circuit Synthesis: Output Structures

noninverting inverting
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In = Iτe
(Vn−V0)/UT In = Iτe

κ(V0−Vn)/UT

∂In

∂Vn
=

In

UT

∂In

∂Vn
= −κIn

UT
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Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

τ
dy

dt
+ y = x, where x > 0.

We represent each signal as a ratio of a signal current to the unit current:

x ≡ Ix

I1
and y ≡ Iy

I1
.

Substituting these into the ODE, we obtain

τ
d

dt

(
Iy

I1

)
+

Iy

I1
=

Ix

I1
=⇒ τ

dIy

dt
+ Iy = Ix.
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Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, Vy.
Using the chain rule, we can express the preceding equation as

τ
∂Iy

∂Vy
· dVy

dt
+ Iy = Ix =⇒ τ

(
− κ

UT
Iy

)
dVy

dt
+ Iy = Ix

=⇒ −κτ

UT
· dVy

dt
+ 1 =

Ix

Iy
=⇒ − κτ

CUT︸ ︷︷ ︸
1/Iτ

·CdVy

dt︸ ︷︷ ︸
Ic

+1 =
Ix

Iy

=⇒ −Ic

Iτ
+ 1 =

Ix

Iy
=⇒ Iτ − Ic =

IτIx

Iy︸︷︷︸
Ip

.
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15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

Synthesize an RMS-to-DC converter described by

x = w2, τ
dy

dt
+ y = x, and z =

√
y.

We can eliminate x and y from the system description by substituting

x = w2, y = z2, and
dy

dt
= 2z

dz

dt

into the linear ODE describing the low-pass filter, obtaining a first-order nonlinear ODE
describing the system given by

2τz
dz

dt
+ z2 = w2.
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w+ ≡ Iw+

I1
= 1

2

(
1 + eκ(Vw−V0)/UT

)
w− ≡ Iw−

I1
= 1

2

(
1 + e−κ(Vw−V0)/UT

)
w ≡ Iw

I1
= w+ − w−

w = sinh
κ (Vw − V0)

UT

w′ ≡ Iw′

I1
= w++w−−1

w′ = cosh
κ (Vw − V0)

UT

w2 = (w′)2 − 1
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

The input signal, w, can be positive or negative. To remedy this situation, we adopt a sinh
representation for w and and define an associated signal, w′, as just described. Substituting
w2 = (w′)2 − 1 into the nonlinear ODE, we obtain

2τz
dz

dt
+ z2 = (w′)2 − 1.

We represent each signal as a ratio of a signal current to the unit current:

w′ ≡ Iw′

I1
and z ≡ Iz

I1
.

Substituting these into the nonlinear ODE, we obtain

2τ
Iz

I1
· d

dt

(
Iz

I1

)
+

(
Iz

I1

)2

=
(

Iw′

I1

)2

− 1 =⇒ 2τIz
dIz

dt
+ I2

z = I2
w′ − I2

1 .
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Dynamic Translinear Circuit Synthesis: RMS-DC Converter

To implement the time derivative, we introduce a log-compressed voltage state variable, Vz.
Using the chain rule, we can express the preceding equation as

2τIz
∂Iz

∂Vz
· dVz

dt
+ I2

z = I2
w′ − I2

1 =⇒ 2τIz

(
− κ

UT
Iz

)
dVz

dt
+ I2

z = I2
w′ − I2

1

=⇒ −2wκ

UT
· dVz

dt
+ 1 =

I2
w′

I2
z

− I2
1

I2
z

=⇒ − 2κτ

CUT︸ ︷︷ ︸
1/Iτ

·CdVz

dt︸ ︷︷ ︸
Ic

+1 =
I2
w′

I2
z

− I2
1

I2
z

=⇒ −Ic

Iτ
+ 1 =

I2
w′

I2
z

− I2
1

I2
z

=⇒ Iτ − Ic =
IτI

2
w′

I2
z︸ ︷︷ ︸

Ip

− IτI
2
1

I2
z︸︷︷︸

Iq

.
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2
1

KCL: Ic+Ip = Iτ +Iq



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

��0 ��0�� �� ����

�� ��



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

��0 ��0�� �� ����

�� ��

�� ���� �� ����

�� ��



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

��0 ��0�� �� ����

�� ��

�� ����

��



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

�� ��

�� ��0 ��0

��

��

�� �� ����



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

�� ��

��

�� ��0

��0

��0

��0

��

��

�� ��

��

�� �� ��

�� ��

��

��




��

��

��



15

Dynamic Translinear Circuit Synthesis: RMS-DC Converter

TLP: IpI
2
z = IτI

2
w′

IqI
2
z = IτI

2
1

KCL: Ic+Ip = Iτ +Iq

�� ��

��

�� ��0

��0

��0

��0

��

��

�� ��

��

�� �� �� ��

�� ��

��

��




��

��

��


