Translinear Circuits

Bradley A. Minch
Mixed Analog-Digital VLSI Circuits and Systems Lab
Franklin W. Olin College of Engineering
Needham, MA 02492-1200
bradley.minch@olin.edu

April 2, 2009

Translinear Circuits: What's in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose large-signal behavior hinges both on the precise exponential I / V relationship of the bipolar transistor and on the intimate thermal contact and close matching of monolithically integrated devices.

Translinear Circuits: What's in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose large-signal behavior hinges both on the precise exponential I / V relationship of the bipolar transistor and on the intimate thermal contact and close matching of monolithically integrated devices.

The word translinear refers to the exponential I / V characteristic of the bipolar transistor - its transconductance is linear in its collector current:

$$
I_{\mathrm{C}}=I_{\mathrm{s}} e^{V_{\mathrm{BE}} / U_{\mathrm{T}}} \Longrightarrow g_{\mathrm{m}}=\frac{\partial I_{\mathrm{C}}}{\partial V_{\mathrm{B}}}=\underbrace{I_{\mathrm{s}} e^{V_{\mathrm{BE}} / U_{\mathrm{T}}}}_{I_{\mathrm{C}}} \cdot \frac{1}{U_{\mathrm{T}}}=\frac{I_{\mathrm{C}}}{U_{\mathrm{T}}} .
$$

Translinear Circuits: What's in a Name?

In 1975, Barrie Gilbert coined the term translinear to describe a class of circuits whose large-signal behavior hinges both on the precise exponential I / V relationship of the bipolar transistor and on the intimate thermal contact and close matching of monolithically integrated devices.

The word translinear refers to the exponential I / V characteristic of the bipolar transistor - its transconductance is linear in its collector current:

$$
I_{\mathrm{C}}=I_{\mathrm{s}} e^{V_{\mathrm{BE}} / U_{\mathrm{T}}} \quad \Longrightarrow \quad g_{\mathrm{m}}=\frac{\partial I_{\mathrm{C}}}{\partial V_{\mathrm{B}}}=\underbrace{I_{\mathrm{s}} e^{V_{\mathrm{BE}} / U_{\mathrm{T}}}}_{I_{\mathrm{C}}} \cdot \frac{1}{U_{\mathrm{T}}}=\frac{I_{\mathrm{C}}}{U_{\mathrm{T}}} .
$$

Gilbert also meant the word translinear to refer to circuit analysis and design principles that bridge the gap between the familiar territory of linear circuits and the uncharted domain of nonlinear circuits.

Gummel Plot of a Forward-Active Bipolar Transistor

Translinearity of the Forward-Active Bipolar Transistor

Olin College

The Translinear Principle

Consider a closed loop of base-emitter junctions of four closely matched $n p n$ bipolar transistors biased in the forward-active region and operating at the same temperature. Kirchhoff's voltage law (KVL) implies that

$$
\begin{aligned}
V_{1}+V_{2} & =V_{3}+V_{4} \\
U_{\mathrm{T}} \log \frac{I_{1}}{I_{\mathrm{s}}}+U_{\mathrm{T}} \log \frac{I_{2}}{I_{\mathrm{s}}} & =U_{\mathrm{T}} \log \frac{I_{3}}{I_{\mathrm{s}}}+U_{\mathrm{T}} \log \frac{I_{4}}{I_{\mathrm{s}}} \\
\log \frac{I_{1} I_{2}}{I_{\mathrm{s}}^{2}} & =\log \frac{I_{3} I_{4}}{I_{\mathrm{s}}^{2}} \\
\underbrace{I_{2} I_{2}}_{\mathrm{CCW}} & =\underbrace{I_{3} I_{4}}_{\mathrm{CW}}
\end{aligned}
$$

This result is a particular case of Gilbert's translinear principle (TLP): The product of the clockwise currents is equal to the product of the counterclockwise currents.

Static Translinear Circuits: Geometric Mean

We neglect both base currents (i.e., $\beta_{\mathrm{F}}=\infty$) and the Early effect, and we assume that all transistors operate in their forward-active regions. Then, we have that

$$
\mathrm{TLP} \Longrightarrow I_{x} I_{y}=I_{z}^{2} \Longrightarrow I_{z}=\sqrt{I_{x} I_{y}}
$$

Static Translinear Circuits: Geometric Mean

a) Olin College

Static Translinear Circuits: Geometric Mean

a) Olin College

Static Translinear Circuits: Squaring/Reciprocal

Again, we neglect both base currents (i.e., $\beta_{\mathrm{F}}=\infty$) and the Early effect, and we assume that all transistors operate in their forward-active regions. Then, we have that

$$
\mathrm{TLP} \Longrightarrow I_{x}^{2}=I_{y} I_{z} \Longrightarrow I_{z}=\frac{I_{x}^{2}}{I_{y}} .
$$

Static Translinear Circuits: Squaring/Reciprocal

Olin College

Static Translinear Circuits: Squaring/Reciprocal

$$
I_{z}=\frac{I_{x}^{2}}{I_{y}}
$$

Static Translinear Circuits: Pythagorator

Again, we neglect both base currents and the Early effect, and we assume that all transistors operate in their forward-active regions. Then, we have that

$$
\begin{aligned}
& \mathrm{TLP} 1 \Longrightarrow I_{x}^{2}=I_{z 1} I_{z} \Longrightarrow I_{z 1}=\frac{I_{x}^{2}}{I_{z}} \\
& \mathrm{TLP} 2 \Longrightarrow I_{y}^{2}=I_{z 2} I_{z} \Longrightarrow I_{z 2}=\frac{I_{y}^{2}}{I_{z}} \\
& \mathrm{KCL} \Longrightarrow I_{z}=I_{z 1}+I_{z 2}=\frac{I_{x}^{2}}{I_{z}}+\frac{I_{y}^{2}}{I_{z}} \\
& \Longrightarrow I_{z}^{2}=I_{x}^{2}+I_{y}^{2} \Longrightarrow I_{z}=\sqrt{I_{x}^{2}+I_{y}^{2}}
\end{aligned}
$$

This circuit is called the pythagorator.

Dynamic Translinear Circuits: First-Order Low-Pass Filter

Next, consider the dynamic translinear circuit shown below, comprising a translinear loop and a capacitor. We shall again neglect base currents and the Early effect. We also assume that all transistors operate in the forward-active region. Then, we have that

$$
\begin{gathered}
\mathrm{TLP} \Longrightarrow I_{\tau} I_{x}=I_{p} I_{y} \Longrightarrow I_{p}=\frac{I_{\tau} I_{x}}{I_{y}} \\
I_{\mathrm{c}}=C \frac{d V}{d t}=C \frac{d}{d t}\left(U_{\mathrm{T}} \log \frac{I_{y}}{I_{\mathrm{s}}}\right)=\frac{C U_{\mathrm{T}}}{I_{y}} \frac{d I_{y}}{d t} \\
\mathrm{KCL} \Longrightarrow I_{\mathrm{c}}+I_{\tau}=I_{p} \Longrightarrow \frac{C U_{\mathrm{T}}}{I_{y}} \frac{d I_{y}}{d t}+I_{\tau}=\frac{I_{\tau} I_{x}}{I_{y}} \\
\Longrightarrow \underbrace{\frac{C U_{\mathrm{T}}}{I_{\tau}}}_{\tau} \frac{d I_{y}}{d t}+I_{y}=I_{x} \Longrightarrow \tau \frac{d I_{y}}{d t}+I_{y}=I_{x}
\end{gathered}
$$

This circuit is a first-order log-domain filter.

Dynamic Translinear Circuits: RMS-to-DC Converter

$$
\begin{aligned}
& \mathrm{TLP} \Longrightarrow I_{w}^{2} I_{\tau}=I_{p} I_{z}^{2} \Longrightarrow I_{p}=\frac{I_{\tau} I_{w}^{2}}{I_{z}^{2}} \\
& I_{\mathrm{c}}=C \frac{d}{d t}\left(2 U_{\mathrm{T}} \log \frac{I_{z}}{I_{\mathrm{s}}}\right)=2 \frac{C U_{\mathrm{T}}}{I_{z}} \frac{d I_{z}}{d t} \\
& \Longrightarrow \mathrm{KCL} \Longrightarrow I_{\mathrm{c}}+I_{\tau}=I_{p} \\
& \Longrightarrow \frac{2 C U_{\mathrm{T}}}{I_{z}} \frac{d I_{z}}{d t}+I_{\tau}=\frac{I_{\tau} I_{w}^{2}}{I_{z}^{2}} \\
& \underbrace{\frac{C U_{\mathrm{T}}}{I_{\tau}}}_{\tau} 2 I_{z} \frac{d I_{z}}{d t}+I_{z}^{2}=I_{w}^{2}
\end{aligned}
$$

Dynamic Translinear Circuits: RMS-to-DC Converter

$$
\begin{aligned}
& \Longrightarrow \tau\left(2 I_{z} \frac{d I_{z}}{d t}\right)+I_{z}^{2}=I_{w}^{2} \\
& \\
& \Longrightarrow \tau \frac{d}{d t}\left(I_{z}^{2}\right)+I_{z}^{2}=I_{w}^{2} \\
& \Longrightarrow \tau \frac{d}{d t}(\underbrace{\left.\frac{I_{z}^{2}}{I_{1}}\right)+\underbrace{\frac{I_{z}^{2}}{I_{1}}}_{I_{y}}=\underbrace{\frac{I_{w}^{2}}{I_{1}}}_{I_{x}}}_{I_{y}} \\
& \underbrace{I_{z}=\sqrt{I_{1} I_{y}}}_{\text {root }} \underbrace{\tau \frac{d I_{y}}{d t}+I_{y}=I_{x}}_{\text {mean }} \underbrace{I_{x}=\frac{I_{w}^{2}}{I_{1}}}_{\text {square }} \quad \stackrel{I_{w}}{\bar{q}}
\end{aligned}
$$

Why Translinear Circuits?
a) Olin College

Why Translinear Circuits?

- Translinear circuits are universal. Conjecture: In principle, we can realize any system whose description we can write down as a nonlinear ODE with time as its independent variable as a dynamic translinear circuit.

Why Translinear Circuits?

- Translinear circuits are universal. Conjecture: In principle, we can realize any system whose description we can write down as a nonlinear ODE with time as its independent variable as a dynamic translinear circuit.
- Translinear circuits are synthesizable via highly structured methods. They should be very amenable to the development both of CAD tools and of reconfigurable FPAA architectures for rapid prototyping and deployment of translinear analog signal processing systems.

Why Translinear Circuits?

- Translinear circuits are universal. Conjecture: In principle, we can realize any system whose description we can write down as a nonlinear ODE with time as its independent variable as a dynamic translinear circuit.
- Translinear circuits are synthesizable via highly structured methods. They should be very amenable to the development both of CAD tools and of reconfigurable FPAA architectures for rapid prototyping and deployment of translinear analog signal processing systems.
- Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear circuits are linear because of device nonlinearities rather than in spite of them.

Why Translinear Circuits?

- Translinear circuits are universal. Conjecture: In principle, we can realize any system whose description we can write down as a nonlinear ODE with time as its independent variable as a dynamic translinear circuit.
- Translinear circuits are synthesizable via highly structured methods. They should be very amenable to the development both of CAD tools and of reconfigurable FPAA architectures for rapid prototyping and deployment of translinear analog signal processing systems.
- Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear circuits are linear because of device nonlinearities rather than in spite of them.
- Translinear circuits are tunable electronically over a wide dynamic range of parameters (e.g., gains, corner frequencies, quality factors).

Why Translinear Circuits?

- Translinear circuits are universal. Conjecture: In principle, we can realize any system whose description we can write down as a nonlinear ODE with time as its independent variable as a dynamic translinear circuit.
- Translinear circuits are synthesizable via highly structured methods. They should be very amenable to the development both of CAD tools and of reconfigurable FPAA architectures for rapid prototyping and deployment of translinear analog signal processing systems.
- Translinear circuits are fundamentally large-signal circuits. Linear dynamic translinear circuits are linear because of device nonlinearities rather than in spite of them.
- Translinear circuits are tunable electronically over a wide dynamic range of parameters (e.g., gains, corner frequencies, quality factors).
- Translinear circuits are robust. Carefully designed translinear circuits are temperature insensitive and do not depend on device or technology parameters.
- Olin College

Simple EKV Model of the Saturated n MOS Transistor

We model the saturation current of an $n \mathrm{MOS}$ transistor by

$$
\begin{aligned}
I_{\mathrm{sat}} & =S I_{\mathrm{s}} \log ^{2}\left(1+e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right) / 2 U_{\mathrm{T}}}\right) \\
& \approx \begin{cases}S I_{\mathrm{s}} e^{\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right) / U_{\mathrm{T}}}, \quad \kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}<0 \\
\frac{S I_{\mathrm{s}}}{4 U_{\mathrm{T}}^{2}}\left(\kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}\right)^{2}, & \kappa\left(V_{\mathrm{G}}-V_{\mathrm{T} 0}\right)-V_{\mathrm{S}}>0,\end{cases}
\end{aligned}
$$

where

$$
U_{\mathrm{T}}=\frac{k T}{q}, \quad S=\frac{W}{L}, \quad I_{\mathrm{s}}=\frac{2 \mu C_{\mathrm{ox}} U_{\mathrm{T}}^{2}}{\kappa}, \quad \text { and } \quad \kappa=\frac{C_{\mathrm{ox}}}{C_{\mathrm{ox}}+C_{\mathrm{dep}}} .
$$

Weak inversion operation corresponds to $I_{\text {sat }} \ll S I_{\mathrm{s}}$, moderate inversion operation corresponds to $I_{\mathrm{sat}} \approx S I_{\mathrm{s}}$, and strong inversion operation to $I_{\text {sat }} \gg S I_{\mathrm{s}}$. Note that $S I_{\mathrm{s}}$ is approximately twice the saturation current at threshold.

Saturation Current of an n MOS Transistor

Olin College

Translinearity of the Saturated n MOS Transistor

c) Olin College

Weak Inversion is Suited to Audio Signal Processing

For integrated continous-time filters, typically

$$
f_{\mathrm{c}}=\frac{g_{\mathrm{m}}}{2 \pi C} .
$$

On-chip capacitors are typically on the order of 1 pF or of 10 pF .

Weak Inversion is Suited to Audio Signal Processing

For integrated continous-time filters, typically

$$
f_{\mathrm{c}}=\frac{g_{\mathrm{m}}}{2 \pi C}
$$

On-chip capacitors are typically on the order of 1 pF or of 10 pF .

If we choose a reasonable value for C, say $C=5 / \pi \mathrm{pF} \approx 1.59 \mathrm{pF}$, then we find that weak inversion maps onto the audio band.

Weak-Inversion MOS Translinear Principle

When designing weak-inversion MOS translinear circuits, if we restrict ourselves to using translinear loops that alternate between clockwise and counterclockwise elements, we obtain Gilbert's original TLP, with no dependence on the body effect (i.e., $\boldsymbol{\kappa}$).

TLP: $I_{1} I_{2}^{\kappa}=I_{3}^{\kappa} I_{4}$

TLP: $I_{1} I_{3}=I_{2} I_{4}$

This restriction does not limit the class of systems that we can implement. However, designs based on alternating loops generally consume more current but operate on a lower power supply voltage than do designs based on stacked loops.

Static Translinear Circuits: Squaring/Reciprocal

Static Translinear Circuits: Squaring/Reciprocal

c) Olin College

Static Translinear Circuits: Squaring/Reciprocal

c) Olin College

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}}
$$

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2}
$$

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\frac{I_{x}^{2}}{I_{r}}+\frac{I_{y}^{2}}{I_{r}}
$$

Static Translinear Circuit Synthesis: Pythagorator

Synthesize a two-dimensional vector-magnitude circuit implementing

$$
r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

We substitute these into the original equation and rearrange to obtain

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\underbrace{\frac{I_{x}^{2}}{I_{r}}}_{I_{r 1}}+\underbrace{\frac{I_{y}^{2}}{I_{r}}}_{I_{r 2}}
$$

Static Translinear Circuit Synthesis: Pythagorator

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2}
$$

Static Translinear Circuit Synthesis: Pythagorator

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$

Static Translinear Circuit Synthesis: Pythagorator

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$

Static Translinear Circuit Synthesis: Pythagorator

$$
\begin{array}{ll}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{array}
$$

Static Translinear Circuit Synthesis: Pythagorator

$$
\begin{aligned}
\mathrm{TLP}: & I_{r 1} I_{r}=I_{x}^{2} \quad \text { KCL: } I_{r}=I_{r 1}+I_{r 2} \\
& I_{r 2} I_{r}=I_{y}^{2}
\end{aligned}
$$

Static Translinear Circuit Synthesis: Pythagorator

Static Translinear Circuit Synthesis: Vector Normalizer

Synthesize a two-dimensional vector-normalization circuit implementing

$$
u=\frac{x}{\sqrt{x^{2}+y^{2}}} \text { and } \quad v=\frac{y}{\sqrt{x^{2}+y^{2}}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

Static Translinear Circuit Synthesis: Vector Normalizer

Synthesize a two-dimensional vector-normalization circuit implementing

$$
u=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad v=\frac{y}{\sqrt{x^{2}+y^{2}}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

Each equation shares $r \equiv \sqrt{x^{2}+y^{2}}$, which we can use to decompose the system as

$$
u=\frac{x}{r}, \quad v=\frac{y}{r}, \quad \text { and } \quad r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

Static Translinear Circuit Synthesis: Vector Normalizer

Synthesize a two-dimensional vector-normalization circuit implementing

$$
u=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad v=\frac{y}{\sqrt{x^{2}+y^{2}}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

Each equation shares $r \equiv \sqrt{x^{2}+y^{2}}$, which we can use to decompose the system as

$$
u=\frac{x}{r}, \quad v=\frac{y}{r}, \quad \text { and } \quad r=\sqrt{x^{2}+y^{2}}, \quad \text { where } \quad x>0 \quad \text { and } \quad y>0 .
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}}, \quad y \equiv \frac{I_{y}}{I_{1}}, \quad u \equiv \frac{I_{u}}{I_{1}}, \quad v \equiv \frac{I_{v}}{I_{1}}, \quad \text { and } \quad r \equiv \frac{I_{r}}{I_{1}} .
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}} \quad \Longrightarrow \quad I_{u} I_{r}=I_{x} I_{1} \quad \text { and } \quad I_{v} I_{r}=I_{y} I_{1}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}} \quad \Longrightarrow \quad I_{u} I_{r}=I_{x} I_{1} \quad \text { and } \quad I_{v} I_{r}=I_{y} I_{1}
$$

and

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}} \quad \Longrightarrow \quad I_{u} I_{r}=I_{x} I_{1} \quad \text { and } \quad I_{v} I_{r}=I_{y} I_{1}
$$

and

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}} \quad \Longrightarrow \quad I_{u} I_{r}=I_{x} I_{1} \quad \text { and } \quad I_{v} I_{r}=I_{y} I_{1}
$$

and

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\frac{I_{x}^{2}}{I_{r}}+\frac{I_{y}^{2}}{I_{r}}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

We substitute these into the original equations and rearrange to obtain

$$
\frac{I_{u}}{I_{1}}=\frac{I_{x} / I_{1}}{I_{r} / I_{1}} \quad \text { and } \quad \frac{I_{v}}{I_{1}}=\frac{I_{y} / I_{1}}{I_{r} / I_{1}} \quad \Longrightarrow \quad I_{u} I_{r}=I_{x} I_{1} \quad \text { and } \quad I_{v} I_{r}=I_{y} I_{1}
$$

and

$$
\frac{I_{r}}{I_{1}}=\sqrt{\left(\frac{I_{x}}{I_{1}}\right)^{2}+\left(\frac{I_{y}}{I_{1}}\right)^{2}} \Longrightarrow I_{r}^{2}=I_{x}^{2}+I_{y}^{2} \quad \Longrightarrow \quad I_{r}=\underbrace{\frac{I_{x}^{2}}{I_{r}}}_{I_{r 1}}+\underbrace{\frac{I_{y}^{2}}{I_{r}}}_{I_{r 2}}
$$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
KCL: $I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$\begin{array}{ll} & I_{v} I_{r}=I_{y} I_{1} \\ \mathrm{KCL}: & I_{r}=I_{r 1}+I_{r 2}\end{array}$
$\begin{array}{ll} & I_{v} I_{r}=I_{y} I_{1} \\ \mathrm{KCL}: & I_{r}=I_{r 1}+I_{r 2}\end{array}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Static Translinear Circuit Synthesis: Vector Normalizer

TLP: $I_{r 1} I_{r}=I_{x}^{2}$
$I_{r 2} I_{r}=I_{y}^{2}$
$I_{u} I_{r}=I_{x} I_{1}$
$I_{v} I_{r}=I_{y} I_{1}$
$\mathrm{KCL}: I_{r}=I_{r 1}+I_{r 2}$

Dynamic Translinear Circuit Synthesis: Output Structures

$$
\begin{gathered}
I_{n}=I_{\tau} e^{\left(V_{n}-V_{0}\right) / U_{\mathrm{T}}} \\
\frac{\partial I_{n}}{\partial V_{n}}=\frac{I_{n}}{U_{\mathrm{T}}}
\end{gathered}
$$

$$
\begin{gathered}
I_{n}=I_{\tau} e^{\kappa\left(V_{0}-V_{n}\right) / U_{\mathrm{T}}} \\
\frac{\partial I_{n}}{\partial V_{n}}=-\frac{\kappa I_{n}}{U_{\mathrm{T}}}
\end{gathered}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0 .
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

Substituting these into the ODE, we obtain

$$
\tau \frac{d}{d t}\left(\frac{I_{y}}{I_{1}}\right)+\frac{I_{y}}{I_{1}}=\frac{I_{x}}{I_{1}}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

Synthesize a first-order low-pass filter described by

$$
\tau \frac{d y}{d t}+y=x, \quad \text { where } \quad x>0
$$

We represent each signal as a ratio of a signal current to the unit current:

$$
x \equiv \frac{I_{x}}{I_{1}} \quad \text { and } \quad y \equiv \frac{I_{y}}{I_{1}} .
$$

Substituting these into the ODE, we obtain

$$
\tau \frac{d}{d t}\left(\frac{I_{y}}{I_{1}}\right)+\frac{I_{y}}{I_{1}}=\frac{I_{x}}{I_{1}} \quad \Longrightarrow \quad \tau \frac{d I_{y}}{d t}+I_{y}=I_{x}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\frac{\kappa \tau}{C U_{\mathrm{T}}} \cdot C \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{aligned}
& \tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
& \Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \Longrightarrow-\underbrace{\frac{\kappa \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}}
\end{aligned}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow-\underbrace{\frac{\kappa \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}}
\end{gathered}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\underbrace{\frac{\kappa \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad I_{\tau}-I_{c}=\frac{I_{\tau} I_{x}}{I_{y}} .
\end{gathered}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

To implement the time derivative, we introduce a log-compressed voltage state variable, V_{y}. Using the chain rule, we can express the preceding equation as

$$
\begin{gathered}
\tau \frac{\partial I_{y}}{\partial V_{y}} \cdot \frac{d V_{y}}{d t}+I_{y}=I_{x} \quad \Longrightarrow \quad \tau\left(-\frac{\kappa}{U_{\mathrm{T}}} I_{y}\right) \frac{d V_{y}}{d t}+I_{y}=I_{x} \\
\Longrightarrow-\frac{\kappa \tau}{U_{\mathrm{T}}} \cdot \frac{d V_{y}}{d t}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad-\underbrace{\frac{\kappa \tau}{C U_{\mathrm{T}}}}_{1 / I_{\tau}} \cdot \underbrace{C \frac{d V_{y}}{d t}}_{I_{c}}+1=\frac{I_{x}}{I_{y}} \\
\Longrightarrow-\frac{I_{c}}{I_{\tau}}+1=\frac{I_{x}}{I_{y}} \quad \Longrightarrow \quad I_{\tau}-I_{c}=\underbrace{\frac{I_{\tau} I_{x}}{I_{y}}}_{I_{p}} .
\end{gathered}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

$$
\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \text { KCL: } I_{c}+I_{p}=I_{\tau}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

$$
\mathrm{TLP}: I_{p} I_{y}=I_{x} I_{\tau} \quad \text { KCL: } I_{c}+I_{p}=I_{\tau}
$$

Dynamic Translinear Circuit Synthesis: First-Order LPF

TLP: $I_{p} I_{y}=I_{x} I_{\tau} \quad \mathrm{KCL}: I_{c}+I_{p}=I_{\tau}$

