A Simple Class-AB Transconductor in CMOS

Bradley A. Minch

Mixed Analog-Digital VLSI Circuits and Systems Lab Franklin W. Olin College of Engineering Needham, MA 02492–1200

bradley.minch@olin.edu

May 19, 2008

Simple EKV MOS Transistor Model

We model the channel current of an nMOS transistor as the difference between a forward current and a reverse current,

$$I = I_{\rm F} - I_{\rm R},$$

whose values are given by

$$I_{\rm F(R)} = SI_{\rm s} \log^2 \left(1 + e^{\left(\kappa (V_{\rm G} - V_{\rm T0}) - V_{\rm S(D)}\right)/2U_{\rm T}} \right),$$

where

$$U_{\rm T} = \frac{kT}{q}, \quad S = \frac{W}{L}, \quad I_{\rm s} = \frac{2\mu C_{\rm ox} U_{\rm T}^2}{\kappa}, \quad \text{and} \quad \kappa = \frac{C_{\rm ox}}{C_{\rm ox} + C_{\rm dep}}.$$

Note that SI_s is approximately twice the saturation current at threshold. This simple model covers all regions of normal MOS transistor operation.

Olin College

 $V_{\rm G} \longrightarrow S$

Simple EKV MOS Transistor Model

The expressions for $I_{\rm F}$ and $I_{\rm R}$ reduce asymptotically to an exponential form in weak inversion and a quadratic form in strong inversion, given by

$$I_{\rm F(R)} \approx \begin{cases} SI_{\rm s}e^{\left(\kappa(V_{\rm G}-V_{\rm T0})-V_{\rm S(D)}\right)/U_{\rm T}}, & I_{\rm sat} \\ V_{\rm G} < V_{\rm T0} + \frac{V_{\rm S(D)}}{\kappa} \\ \frac{SI_{\rm s}}{4U_{\rm T}^2} \left(\kappa\left(V_{\rm G}-V_{\rm T0}\right)-V_{\rm S(D)}\right)^2, & I_{\rm sat} \\ V_{\rm G} > V_{\rm T0} + \frac{V_{\rm S(D)}}{\kappa}. & I_{\rm sat} \\ V_{\rm G} > V_{\rm T0} + \frac{V_{\rm S(D)}}{\kappa}. & I_{\rm sat} \\ V_{\rm G} > V_{\rm T0} + \frac{V_{\rm S(D)}}{\kappa}. & I_{\rm sat} \\ I_{\rm sat} > I_{\rm sat} > I_{\rm sat} \\ I_{\rm sat} > I_{\rm sat} > I_{\rm sat} \\ I_{\rm sat} > I_{\rm sat} > I_{\rm sat} \\ I_{\rm sat} > I_{\rm sat} > I_{\rm sat} > I_{\rm sat} \\ I_{\rm sat} > I_$$

Simple EKV MOS Transistor Model

The expressions for $I_{\rm F}$ and $I_{\rm R}$ are also explicitly invertible; the inverses are given by

$$\kappa \left(V_{\rm G} - V_{\rm T0} \right) - V_{\rm S(D)} = 2U_{\rm T} \log \left(e^{\sqrt{I_{\rm F(R)}/SI_{\rm s}}} - 1 \right)$$

$$\approx \begin{cases} U_{\rm T} \log \frac{I_{\rm F(R)}}{SI_{\rm s}}, & I_{\rm F(R)} \ll SI_{\rm s} \\ 2U_{\rm T} \sqrt{\frac{I_{\rm F(R)}}{SI_{\rm s}}}, & I_{\rm F(R)} \gg SI_{\rm s}. \end{cases}$$

Delbrück's Bump/Antibump Circuit

If the bias current, $I_{\rm b}$, is in weak inversion, then the bump current, I_3 , is an even-symmetric, bell-shaped function of the differential-mode input voltage, $V_{\rm dm} = V_1 - V_2$, given by

$$I_3 = \frac{I_{\rm b}}{2} \operatorname{sech}^2 \left(\frac{\kappa V_{\rm dm}}{2U_{\rm T}} \right).$$

Note that the three output currents sum to a constant, $I_{\rm b}$, so the sum $I_1 + I_2$ is just $I_{\rm b}$ less the bump current, which is the antibump current.

A Variation of the Bump/Antibump Circuit

Now, suppose that we fix the bump current to be a constant, $I_{\rm b}$. If I_1 , I_2 , and $I_{\rm b}$ are in weak inversion, we have that

$$I_1 = SI_{\rm s} e^{(\kappa(V_1 - V_{\rm T0}) - V)/U_{\rm T}},$$

$$I_2 = SI_{\rm s}e^{(\kappa(V_2 - V_{\rm T0}) - V)/U_{\rm T}},$$

and

Olin College

$$I_{\rm b} = \frac{I_1 I_2}{I_1 + I_2} = I_1 \| I_2.$$

A Variation of the Bump/Antibump Circuit

Now, consider the quantity

$$I_{\rm b} = I_1 || I_2$$

= $SI_{\rm s} e^{(\kappa(V_1 - V_{\rm T0}) - V)/U_{\rm T}} || SI_{\rm s} e^{(\kappa(V_2 - V_{\rm T0}) - V)/U_{\rm T}}$
= $SI_{\rm s} e^{-\kappa V_{\rm T0}/U_{\rm T}} e^{-V/U_{\rm T}} \left(e^{\kappa V_1/U_{\rm T}} || e^{\kappa V_2/U_{\rm T}} \right),$

which implies that

$$SI_{s}e^{-\kappa V_{T0}/U_{T}}e^{-V/U_{T}} = \frac{I_{b}}{e^{\kappa V_{1}/U_{T}} ||e^{\kappa V_{2}/U_{T}}}.$$

A Variation of the Bump/Antibump Circuit

By substituting this result back into the equations for I_1 and I_2 , we find that

$$I_{1} = \frac{I_{\rm b} e^{\kappa V_{1}/U_{\rm T}}}{e^{\kappa V_{1}/U_{\rm T}} \| e^{\kappa V_{2}/U_{\rm T}}} = I_{\rm b} \left(1 + e^{\kappa (V_{1} - V_{2})/U_{\rm T}} \right) = I_{\rm b} \left(1 + e^{\kappa V_{\rm dm}/U_{\rm T}} \right),$$

that

$$I_{2} = \frac{I_{\rm b} e^{\kappa V_{2}/U_{\rm T}}}{e^{\kappa V_{1}/U_{\rm T}} \|e^{\kappa V_{2}/U_{\rm T}}} = I_{\rm b} \left(1 + e^{-\kappa (V_{1} - V_{2})/U_{\rm T}}\right) = I_{\rm b} \left(1 + e^{-\kappa V_{\rm dm}/U_{\rm T}}\right),$$

and that

$$I_1 - I_2 = I_{\rm b} \left(e^{\kappa V_{\rm dm}/U_{\rm T}} - e^{-\kappa V_{\rm dm}/U_{\rm T}} \right) = 2I_{\rm b} \sinh\left(\frac{\kappa V_{\rm dm}}{U_{\rm T}}\right)$$

Fixing the Bump Current at $I_{\rm b}$

Bias Circuit for Folded-Cascode/Flipped-Follower

Olin College

Analytical Model of Output Current versus V_{dm}

By using the simplified EKV model of the MOS transistor, we can show that

$$I_{1} = I_{\rm b} + SI_{\rm s} \log^{2} \left(1 + e^{\kappa V_{\rm dm}/2U_{\rm T}} \left(e^{\sqrt{I_{\rm b}/SI_{\rm s}}} - 1 \right) \right)$$

and that

$$I_2 = SI_{\rm s} \log^2 \left(1 + e^{-\kappa V_{\rm dm}/2U_{\rm T}} \left(e^{\sqrt{I_1/SI_{\rm s}}} - 1 \right) \right),$$

where all the symbols have their previously defined meanings.

Note that the model equation for I_2 is expressed in terms of I_1 , which, in turn, is an explicit function of V_{dm} . So, we can obtain explicit expressions for I_2 and $I_1 - I_2$ in terms of V_{dm} , but it is unclear that doing so is of much value, because doing so leads to *very* cumbersome expressions.

Output Currents versus V_{dm}

Differential Output Current versus V_{dm}

Differential-Mode Transconductance versus $V_{\rm cm}$

Olin College

Enhanced-Slew-Rate Folded-Cascode Amplifier

Enhanced-Slew-Rate Folded-Cascode Amplifier Step Response

